山东省垦利区2023-2024学年九年级数学第一学期期末质量检测模拟试题含答案
展开
这是一份山东省垦利区2023-2024学年九年级数学第一学期期末质量检测模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,如图,△OAB∽△OCD,OA,在中,=90〫,,则的值是等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1.把抛物线向右平移3个单位,再向上平移2个单位,得到抛物线( ).
A.B.C.D.
2.已知关于x的二次方程有两个实数根,则k的取值范围是( )
A.B.且C.D.且
3.若x=2是关于x的一元二次方程x2﹣2a=0的一个根,则a的值为( )
A.3B.2C.4D.5
4.如图,△OAB∽△OCD,OA:OC=3:2,∠A=α,∠C=β,△OAB与△OCD的面积分别是S1和S2,△OAB与△OCD的周长分别是C1和C2,则下列等式一定成立的是( )
A.B.C.D.
5.如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD等于( )
A.40°B.50°C.60°D.80°
6. 如图,点E、F分别为正方形ABCD的边BC、CD上一点,AC、BD交于点O,且∠EAF=45°,AE,AF分别交对角线BD于点M,N,则有以下结论:①△AOM∽△ADF;②EF=BE+DF;③∠AEB=∠AEF=∠ANM;④S△AEF=2S△AMN,以上结论中,正确的个数有( )个.
A.1B.2C.3D.4
7.按如下方法,将△ABC的三边缩小的原来的,如图,任取一点O,连AO、BO、CO,并取它们的中点D、E、F,得△DEF,则下列说法正确的个数是( )
①△ABC与△DEF是位似图形 ②△ABC与△DEF是相似图形
③△ABC与△DEF的周长比为1:2 ④△ABC与△DEF的面积比为4:1.
A.1B.2C.3D.4
8.如图,在直角坐标系中,点A是x轴正半轴上的一个定点,点B是双曲线y=(x>0)上的一个动点,当点B的横坐标系逐渐增大时,△OAB的面积将会( )
A.逐渐变小B.逐渐增大C.不变D.先增大后减小
9.在中,=90〫,,则的值是( )
A.B.C.D.
10.在平面直角坐标系xOy中,已知点M,N的坐标分别为(﹣1,2),(2,1),若抛物线y=ax2﹣x+2(a≠0)与线段MN有两个不同的交点,则a的取值范围是( )
A.a≤﹣1或≤a<B.≤a<
C.a≤或a>D.a≤﹣1或a≥
11.如图,将矩形ABCD沿对角线BD折叠,点C落在点E处,BE交AD于点F,已知∠BDC=62°,则∠DFE的度数为( )
A.31°B.28°C.62°D.56°
12.点P(x﹣1,x+1)不可能在( )
A.第一象限B.第二象限C.第三象限D.第四象限
二、填空题(每题4分,共24分)
13.已知,且 ,且与的周长和为175 ,则的周长为 _________.
14.如图:⊙A、⊙B、⊙C两两不相交,且半径均为1,则图中三个阴影扇形的面积之和为 .
15.如图所示,在平面直角坐标系中,正方形OABC的顶点O与原点重合,顶点A,C分别在x轴、y轴上,双曲线y=kx﹣1(k≠0,x>0)与边AB、BC分别交于点N、F,连接ON、OF、NF.若∠NOF=45°,NF=2,则点C的坐标为_____.
16.双曲线y1、y2在第一象限的图象如图,,过y1上的任意一点A,作x轴的平行线交y2于B,交y轴于C,若S△AOB=1,则y2的解析式是
17.已知线段a=4 cm,b=9 cm,则线段a,b的比例中项为_________cm.
18.如图,在一张矩形纸片ABCD中,AB=4,BC=8,点E,F分别在AD,BC上,将纸片ABCD沿直线EF折叠,点C落在AD上的一点H处,点D落在点G处,有以下四个结论:
①四边形CFHE是菱形;
②EC平分∠DCH;
③线段BF的取值范围为3≤BF≤4;
④当点H与点A重合时,EF=2.
以上结论中,你认为正确的有 .(填序号)
三、解答题(共78分)
19.(8分)我们把两条中线互相垂直的三角形称为“中垂三角形”. 如图1,图2,图3中,是的中线,,垂足为点,像这样的三角形均为“中垂三角形. 设.
(1)如图1,当时,则_________,__________;
(2)如图2,当时,则_________,__________;
归纳证明
(3)请观察(1)(2)中的计算结果,猜想三者之间的关系,用等式表示出来,并利用图3证明你发现的关系式;
拓展应用
(4)如图4,在中,分别是的中点,且. 若,,求的长.
20.(8分)已知:在平面直角坐标系中,的三个顶点的坐标分别为,,.
(1)画出关于原点成中心对称的,并写出点的坐标;
(2)画出将绕点按顺时针旋转所得的.
21.(8分)如图1,抛物线y=﹣x2+mx+n交x轴于点A(﹣2,0)和点B,交y轴于点C(0,2).
(1)求抛物线的函数表达式;
(2)若点M在抛物线上,且S△AOM=2S△BOC,求点M的坐标;
(3)如图2,设点N是线段AC上的一动点,作DN⊥x轴,交抛物线于点D,求线段DN长度的最大值.
22.(10分)为了节省材料,某水产养殖户利用本库的岸堤(岸堤足够长)为一边,用总长为160m的围网在水库中围成了如图所示的①、②、③三块矩形区域网箱,而且这三块矩形区域的面积相等,设BE的长度为xm,矩形区域ABCD的面积为ym1.
(1)则AE= m,BC= m;(用含字母x的代数式表示)
(1)求矩形区域ABCD的面积y的最大值.
23.(10分)小王去年开了一家微店,今年1月份开始盈利,2月份盈利2400元,4月份盈利达到3456元,且从2月份到4月份,每月盈利的平均增长率相同,试求每月盈利的平均增长率.
24.(10分)某商品的进价为每件50元,售价为每件60元,每个月可卖出200件.如果每
件商品的售价上涨1元,则每个月少卖10件(每件售价不能高于72元).设每件商品的售价上涨x元(x
为整数),每个月的销售利润为y元,
(1)求y与x的函数关系式,并直接写出x的取值范围;
(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大月利润是多少元?
25.(12分)如图,在正方形ABCD中,点M、N分别在AB、BC边上,∠MDN=45°.
(1)如图1,DN交AB的延长线于点F. 求证:;
(2)如图2,过点M作MP⊥DB于P,过N作NQ⊥BD于,若,求对角线BD的长;
(3)如图3,若对角线AC交DM,DF分别于点T,E.判断△DTN的形状并说明理由.
26.(12分)如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点,
(1)求证:AC2=AB•AD;
(2)求证:CE∥AD;
(3)若AD=4,AB=6,求的值.
参考答案
一、选择题(每题4分,共48分)
1、D
2、B
3、A
4、D
5、D
6、D
7、C
8、A
9、A
10、A
11、D
12、D
二、填空题(每题4分,共24分)
13、1
14、.
15、 (0,+1)
16、y2=.
17、6
18、①③④
三、解答题(共78分)
19、(1) ,;(2),;(3),证明见解析;(4)
20、(1)如图所示,即为所求,见解析,点的坐标为;(2)如图所示,即为所求.见解析.
21、(2)y=﹣x2﹣x+2; (2)(0,2)或(﹣2,2)或(,﹣2)或(,﹣2);(3)2.
22、(1)1x,(80﹣4x);(1)1100m1.
23、
24、(1)y=-10x2+100x+1,0<x≤2(2)每件商品的售价定为5元时,每个月可获得最大利润,最大月利润是3元
25、(1)证明见解析;(2);(3)是等腰直角三角形,理由见解析
26、(1)见解析
(2)见解析
(1).
相关试卷
这是一份山东省东营垦利区四校联考2023-2024学年九年级数学第一学期期末质量检测模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔,下列事件中,是随机事件的是等内容,欢迎下载使用。
这是一份2023-2024学年山东省东营市垦利区九上数学期末达标检测模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,抛物线的对称轴是,下列图形中为中心对称图形的是,抛物线 y=﹣等内容,欢迎下载使用。
这是一份山东省东营市垦利区2023-2024学年数学八年级第一学期期末监测模拟试题含答案,共7页。试卷主要包含了分式有意义的条件是,下列因式分解中等内容,欢迎下载使用。