山东省临沂市费县2023-2024学年九上数学期末达标测试试题含答案
展开学校_______ 年级_______ 姓名_______
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1.如图所示的几何体的俯视图是( )
A.B.C.D.
2.下列事件中是必然事件的是( )
A.﹣a是负数B.两个相似图形是位似图形
C.随机抛掷一枚质地均匀的硬币,落地后正面朝上D.平移后的图形与原来的图形对应线段相等
3.如图,滑雪场有一坡角α为20°的滑雪道,滑雪道AC的长为200米,则滑雪道的坡顶到坡底垂直高度AB的长为( )
A.200tan20°米B.米C.200sin20°米D.200cs20°米
4.菱形中,,对角线相交于点,以为圆心,以3为半径作,则四个点在上的个数为( )
A.1B.2C.3D.4
5.为了响应“绿水青山就是金山银山”的号召,建设生态文明,某工厂自2019年1月开始限产并进行治污改造,其月利润(万元)与月份之间的变化如图所示,治污完成前是反比例函数图象的一部分,治污完成后是一次函数图象的部分,下列选项错误的是( )
A.4月份的利润为万元
B.污改造完成后每月利润比前一个月增加万元
C.治污改造完成前后共有个月的利润低于万元
D.9月份该厂利润达到万元
6.如图,在平面直角坐标系中,的顶点在第一象限,点在轴的正半轴上,,,将绕点逆时针旋转,点的对应点的坐标是( )
A.B.C.D.
7.二次函数y=ax2+bx+c(a≠0)和正比例函数y=x的图象如图所示,则方程ax2+(b﹣)x+c=0(a≠0)的两根之和( )
A.大于0B.等于0C.小于0D.不能确定
8.一元二次方程x2+px﹣2=0的一个根为2,则p的值为( )
A.1B.2C.﹣1D.﹣2
9.如图,四边形ABCD内接于⊙0,四边形ABCO是平行四边形,则∠ADC的度数为( )
A.30°B.45°C.60°D.75°
10.如图,已知抛物线和直线.我们约定:当x任取一值时,x对应的函数值分别为y1、y2,若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M= y1=y2.
下列判断: ①当x>2时,M=y2;
②当x<0时,x值越大,M值越大;
③使得M大于4的x值不存在;
④若M=2,则x=" 1" .
其中正确的有
A.1个B.2个C.3个D.4个
11.在Rt△ABC中,∠C=90°,AC=4,BC=3,则是
A.B.C.D.
12.不等式的解为( )
A.B.C.D.
二、填空题(每题4分,共24分)
13.如图,矩形ABCD的顶点A、B在x轴的正半轴上,反比例函数y=(k≠0)在第一象限内的图象经过点D,交BC于点E.若AB=4,CE=2BE,tan∠AOD=,则k的值_____.
14.如图,是由10个小正三角形构造成的网格图(每个小正三角形的边长均为1),则sin(α+β)=__.
15.二次函数的图象如图所示,给出下列说法:
①;②方程的根为,;③;④当时,随值的增大而增大;⑤当时,.其中,正确的说法有________(请写出所有正确说法的序号).
16.如图,在由边长为1的小正方形组成的网格中.点 A,B,C,D 都在这些小正方形的格点上,AB、CD 相交于点E,则sin∠AEC的值为_____.
17.做任意抛掷一只纸杯的重复实验,部分数据如下表
根据上表,可估计任意抛掷一只纸杯,杯口朝上的概率约为__________.
18.已知二次函数的部分图象如图所示,则关于的一元二次方程的解为______________.
三、解答题(共78分)
19.(8分)如图,在△ABC中,∠B=45°,AC=5,csC=,AD是BC边上的高线.
(1)求AD的长;
(2)求△ABC的面积.
20.(8分)如图,一次函数与反比例函数的图象交于,点两点,交轴于点.
(1)求、的值.
(2)请根据图象直接写出不等式的解集.
(3)轴上是否存在一点,使得以、、三点为顶点的三角形是为腰的等腰三角形,若存在,请直接写出符合条件的点的坐标,若不存在,请说明理由.
21.(8分)如图,已知直线与轴交于点,与反比例函数的图象交于,两点,的面积为.
(1)求一次函数的解析式;
(2)求点坐标和反比例函数的解析式.
22.(10分)如图,Rt△ABC中,∠C=90°,E是AB边上一点,D是AC边上一点,且点D不与A、C重合,ED⊥AC.
(1)当sinB=时,
①求证:BE=2CD.
②当△ADE绕点A旋转到如图2的位置时(45°<∠CAD<90°).BE=2CD是否成立?若成立,请给出证明;若不成立.请说明理由.
(2)当sinB=时,将△ADE绕点A旋转到∠DEB=90°,若AC=10,AD=2,求线段CD的长.
23.(10分)已知:如图,在平行四边形ABCD中,过点C分别作AD、AB的垂线,交边AD、AB延长线于点E、F.
(1)求证:;
(2)联结AC,如果,求证:.
24.(10分)如图,四边形ABCD内接于⊙O,∠1至∠6是六个不同位置的圆周角.
(1)分别写出与∠1、∠2相等的圆周角,并求∠1+∠2+∠3+∠4的值;
(2)若∠1-∠2=∠3-∠4,求证: AC⊥BD.
25.(12分)如图,某农户计划用长12m的篱笆围成一个“日”字形的生物园饲养两种不同的家禽,生物园的一面靠墙,且墙的可利用长度最长为7m.
(1)若生物园的面积为9m2,则这个生物园垂直于墙的一边长为多少?
(2)若要使生物园的面积最大,该怎样围?
26.(12分)某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且利润率不得高于.经市场调查,每天的销售量(千克)与每千克售价(元)满足一次函数关系,部分数据如下表:
(1)求与之间的函数表达式,并写出自变量的范围;
(2)设每天销售该商品的总利润为(元),求与之间的函数表达式(利润=收入-成本),并求出售价为多少元时每天销售该商品所获得最大利润,最大利润是多少?
参考答案
一、选择题(每题4分,共48分)
1、D
2、D
3、C
4、B
5、C
6、D
7、A
8、C
9、C
10、B
11、A
12、B
二、填空题(每题4分,共24分)
13、1
14、.
15、①②④
16、
17、0.1
18、x1= -1, x2=1
三、解答题(共78分)
19、(1)AD=2;(2)S△ABC=1.
20、 (1),;(2)或;(3)存在,点的坐标是或或.
21、(1)(1);
22、(1)①证明见解析;②BE=2CD成立.理由见解析;(2)2或4.
23、(1)见解析;(2)见解析
24、(1)∠6=∠1,∠5=∠2,1°;(2)详见解析
25、(1)3m;(1)生物园垂直于墙的一边长为1m.平行于墙的一边长为6m时,围成生物园的面积最大,且为11m1
26、(1);(2)售价为60元时每天销售该商品所获得最大利润,最大利润是1600.
抛掷次数
50
100
500
800
1500
3000
5000
杯口朝上的频率
0.1
0.15
0.2
0.21
0.22
0.22
0.22
售价(元/千克)
45
50
55
销售量(千克)
110
100
90
2023-2024学年山东省临沂市费县八年级(上)期末数学试卷(含解析): 这是一份2023-2024学年山东省临沂市费县八年级(上)期末数学试卷(含解析),共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
山东省临沂市太平中学2023-2024学年数学九上期末达标测试试题含答案: 这是一份山东省临沂市太平中学2023-2024学年数学九上期末达标测试试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,估计 ,的值应在等内容,欢迎下载使用。
山东省临沂市兰山区2023-2024学年数学九上期末达标检测试题含答案: 这是一份山东省临沂市兰山区2023-2024学年数学九上期末达标检测试题含答案,共8页。试卷主要包含了关于抛物线的说法中,正确的是,已知a≠0,下列计算正确的是等内容,欢迎下载使用。