山东省临沂市兰山区2023-2024学年数学九上期末达标检测试题含答案
展开
这是一份山东省临沂市兰山区2023-2024学年数学九上期末达标检测试题含答案,共8页。试卷主要包含了关于抛物线的说法中,正确的是,已知a≠0,下列计算正确的是等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每题4分,共48分)
1.已知二次函数的图象(0≤x≤4)如图,关于该函数在所给自变量的取值范围内,下列说法正确的是( )
A.有最大值 1.5,有最小值﹣2.5B.有最大值 2,有最小值 1.5
C.有最大值 2,有最小值﹣2.5D.有最大值 2,无最小值
2.下列函数中,当x>0时,y随x的增大而增大的是( )
A.
B.
C.
D.
3.在平面直角坐标系中,开口向下的抛物线y=ax2+bx+c的一部分图象如图所示,它与x轴交于A(1,0),与y轴交于点B (0,3),对称轴是直线x= -1.则下列结论正确的是( )
A.ac>0B.b2-4ac=0C.a-b+c<0D.当-3<x<1时,y>0
4.正五边形的每个内角度数为( )
A.36°B.72°C.108°D.120°
5.一个凸多边形共有 20 条对角线,它是( )边形
A.6B.7C.8D.9
6.如图,我国传统文化中的“福禄寿喜”图由四个图案构成,这四个图案中是中心对称图形的是( )
A.B.C.D.
7.抛物线y=x2+2x+m﹣1与x轴有两个不同的交点,则m的取值范围是( )
A.m<2B.m>2C.0<m≤2D.m<﹣2
8.关于抛物线的说法中,正确的是( )
A.开口向下B.与轴的交点在轴的下方
C.与轴没有交点D.随的增大而减小
9.如图,⊙O是△ABC的外接圆,∠B=60°,OP⊥AC于点P,OP=2,则⊙O的半径为( ).
A.4B.6C.8D.12
10.已知a≠0,下列计算正确的是( )
A.a2+a3=a5B.a2•a3=a6C.a3÷a2=aD.(a2)3=a5
11.如图所示,在平面直角坐标系中,已知点A(2,4),过点A作AB⊥x轴于点B.将△AOB以坐标原点O为位似中心缩小为原图形的,得到△COD,则CD的长度是( )
A.2B.1C.4D.2
12.要将抛物线平移后得到抛物线,下列平移方法正确的是( )
A.向左平移1个单位,再向上平移2个单位B.向左平移1个单位,再向下平移2个单位
C.向右平移1个单位,再向上平移2个单位D.向右平移1个单位,再向下平移2个单位
二、填空题(每题4分,共24分)
13.反比例函数的图象具有下列特征:在所在象限内,的值随值增大而减小.那么的取值范围是_____________.
14.已知线段a=4 cm,b=9 cm,则线段a,b的比例中项为_________cm.
15.将“定理”的英文单词therem中的7个字母分别写在7张相同的卡片上,字面朝下随意放在桌子上,任取一张,那么取到字母e的概率为 .
16.cs30°+sin45°+tan60°=_____.
17.已知抛物线,那么点P(-3,4)关于该抛物线的对称轴对称的点的坐标是______.
18.如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,将Rt△AOB绕点O顺时针旋转90°后得Rt△FOE,将线段EF绕点E逆时针旋转90°后得线段ED,分别以O,E为圆心,OA、ED长为半径画弧AF和弧DF,连接AD,则图中阴影部分面积是_____.
三、解答题(共78分)
19.(8分)如图,已知△ABC,直线PQ垂直平分AC,与边AB交于E,连接CE,过点C作CF平行于BA交PQ于点F,连接AF.
(1)求证:△AED≌△CFD;
(2)求证:四边形AECF是菱形.
(3)若AD=3,AE=5,则菱形AECF的面积是多少?
20.(8分)非洲猪瘟疫情发生以来,猪肉市场供应阶段性偏紧和猪价大幅波动时有发生,为稳定生猪生产,促进转型升级,增强猪肉供应保障能力,国务院办公厅于2019年9月印发了《关于稳定生猪生产促进转型升级的意见》,某生猪饲养场积极响应国家号召,努力提高生产经营管理水平,稳步扩大养殖规模,增加猪肉供应量。该饲养场2019年每月生猪产量y(吨)与月份x(,且x为整数)之间的函数关系如图所示.
(1)请直接写出当(x为整数)和(x为整数)时,y与x的函数关系式;
(2)若该饲养场生猪利润P(万元/吨)与月份x(,且x为整数)满足关系式:,请问:该饲养场哪个月的利润最大?最大利润是多少?
21.(8分)在推进城乡生活垃圾分类的行动中,某校数学兴趣小组为了了解居民掌握垃圾分类知识的情况,对两小区各600名居民进行测试,从中各随机抽取50名居民成绩进行整理得到部分信息:
(信息一)小区50名居民成绩的频数直方图如图(每一组含前一个边界值,不含后一个边界值);
(信息二)上图中,从左往右第四组成绩如下:
(信息三)两小区各50名居民成绩的平均数、中位数、众数、优秀率(80分及以上为优秀)、方差等数据如下(部分空缺):
根据以上信息,回答下列问题:
(1)求小区50名居民成绩的中位数;
(2)请估计小区600名居民成绩能超过平均数的人数;
(3)请尽量从多个角度,选择合适的统计量分析两小区参加测试的居民掌握垃圾分类知识的情况.
22.(10分)计算:.
23.(10分)反比例函数与一次函数的图象都过.
(1)求点坐标;
(2)求反比例函数解析式.
24.(10分)如图,在平面直角坐标系中,点B(12,10),过点B作x轴的垂线,垂足为A.作y轴的垂线,垂足为C.点D从O出发,沿y轴正方向以每秒1个单位长度运动;点E从O出发,沿x轴正方向以每秒3个单位长度运动;点F从B出发,沿BA方向以每秒2个单位长度运动.当点E运动到点A时,三点随之停止运动,运动过程中△ODE关于直线DE的对称图形是△O′DE,设运动时间为t.
(1)用含t的代数式分别表示点E和点F的坐标;
(2)若△ODE与以点A,E,F为顶点的三角形相似,求t的值;
(3)当t=2时,求O′点在坐标.
25.(12分)在平面直角坐标系中,直线 y = x与反比例函数的图象交于点A(2,m).
(1)求m和k的值;
(2)点P(xP,yP)是函数图象上的任意一点,过点P作平行于x轴的直线,交直线y=x于点B.
①当yP = 4时,求线段BP的长;
②当BP3时,结合函数图象,直接写出点P 的纵坐标yP的取值范围.
26.(12分)解方程:
(1)(公式法)
(2)
参考答案
一、选择题(每题4分,共48分)
1、C
2、B
3、D
4、C
5、C
6、B
7、A
8、C
9、A
10、C
11、A
12、A
二、填空题(每题4分,共24分)
13、
14、6
15、
16、
17、(1,4).
18、8﹣π
三、解答题(共78分)
19、(4)证明见解析;(4)证明见解析;(4)4
20、(1)(,x为整数) , (,x为整数);(2)该饲养场一月份的利润最大,最大利润是203万元
21、(1)76;(2)300人;(3)从平均数看,两个小区居民对垃圾分类知识掌握情况的平均水平相同;从方差看,B小区居民对垃圾分类知识掌握的情况比A小区稳定;从中位数看,B小区至少有一半的居民成绩高于平均数
22、2
23、 (1)点的坐标为;(2)反比例函数解析式为.
24、(1)E(3t,0),F(12,10﹣2t);(2)t=;(3)O'(,)
25、(1)m=2,k=4 ;(2)①BP=3 ; ② yP≥4或0
相关试卷
这是一份2023-2024学年山东省临沂市兰山区九年级(上)期末数学试卷(含解析),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份山东省临沂市费县2023-2024学年九上数学期末达标测试试题含答案,共9页。试卷主要包含了考生必须保证答题卡的整洁,二次函数y=ax2+bx+c等内容,欢迎下载使用。
这是一份山东省邹平市2023-2024学年九上数学期末达标检测模拟试题含答案,共9页。试卷主要包含了答题时请按要求用笔,某反比例函数的图象经过点,二次函数y=﹣,已知的图象如图,则和的图象为等内容,欢迎下载使用。