山东省滨州市名校2023-2024学年数学九上期末联考模拟试题含答案
展开
这是一份山东省滨州市名校2023-2024学年数学九上期末联考模拟试题含答案,共9页。试卷主要包含了考生必须保证答题卡的整洁,下列事件为必然事件的是,如图,点A等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1.在下列四种图形变换中,如图图案包含的变换是( )
A.平移、旋转和轴对称B.轴对称和平移
C.平移和旋转D.旋转和轴对称
2.如图,在中,为上一点,连接、,且、交于点,,则等于( )
A.B.C.D.
3.如图,圆心角都是90°的扇形OAB与扇形OCD叠放在一起,OA=3,OC=1,分别连结AC、BD,则图中阴影部分的面积为( )
A.B.C.D.
4.如图,在中,,,,点为上任意一点,连结,以,为邻边作平行四边形,连结,则的最小值为( )
A.B.C.D.
5.如图,网格中的两个三角形是位似图形,它们的位似中心是( )
A.点AB.点BC.点CD.点D
6.当取何值时,反比例函数的图象的一个分支上满足随的增大而增大( )
A.B.C.D.
7.下列事件为必然事件的是( )
A.袋中有4个蓝球,2个绿球,共6个球,随机摸出一个球是红球
B.三角形的内角和为180°
C.打开电视机,任选一个频道,屏幕上正在播放广告
D.抛掷一枚硬币两次,第一次正面向上,第二次反面向上
8.如图,A、D是⊙O上的两个点,若∠ADC=33°,则∠ACO的大小为( )
A.57°B.66°C.67°D.44°
9.如图,点A.B.C在⊙D上,∠ABC=70°,则∠ADC的度数为( )
A.110°B.140°C.35°D.130°
10.给出下列函数,其中y随x的增大而减小的函数是( )
①y=2x;②y=﹣2x+1;③y=(x<0);④y=x2(x<1).
A.①③④B.②③④C.②④D.②③
11.如图,在平面直角坐标系中,菱形ABCD的顶点A(3,0),顶点B在y轴正半轴上,顶点D在x轴负半轴上,若抛物线y=-x2-5x+c经过点B、C,则菱形ABCD的面积为( )
A.15B.20C.25D.30
12. “圆材埋壁”是我国古代著名的数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长六寸,问径几何?”用现代的数学语言表述是:“CD为的直径,弦,垂足为E,CE=1寸,AB=10寸,求直径CD的长”,依题意得CD的长为( )
A.12寸B.13寸C.24寸D.26寸
二、填空题(每题4分,共24分)
13.如图,中,,,,将绕顶点逆时针旋转到处,此时线段与的交点恰好为的中点,则的面积为______.
14.如图,△ABC的两条中线AD,BE交于点G,EF∥BC交AD于点F.若FG=1,则AD=_____.
15.如图,⊙O的半径OA长为6,BA与⊙O相切于点A,交半径OC的延长线于点B,BA长为,AH⊥OC,垂足为H,则图中阴影部分面积为_____.(结果保留根号)
16.定义:在平面直角坐标系中,我们将函数的图象绕原点逆时针旋转后得到的新曲线称为“逆旋抛物线”.
(1)如图①,己知点,在函数的图象上,抛物线的顶点为,若上三点、、是、、旋转后的对应点,连结,、,则__________;
(2)如图②,逆旋抛物线与直线相交于点、,则__________.
17.函数的自变量的取值范围是.
18.在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A,如图所示依次作正方形A1B1C1O、正方形A2B2C2C1…、正方形AnBn∁nCn+1,使得点A1、A2、A3、…在直线l上,点C1、C2、C3、…在y轴正半轴上,则点B₃的坐标是_____,点Bn的坐标是_____.
三、解答题(共78分)
19.(8分)如图,在平面直角坐标系中,抛物线y=ax2+bx+6经过点A(﹣3,0)和点B(2,0),直线y=h(h为常数,且0<h<6)与BC交于点D,与y轴交于点E,与AC交于点F.
(1)求抛物线的解析式;
(2)连接AE,求h为何值时,△AEF的面积最大.
(3)已知一定点M(﹣2,0),问:是否存在这样的直线y=h,使△BDM是等腰三角形?若存在,请求出h的值和点D的坐标;若不存在,请说明理由.
20.(8分)已知,正方形中,点是边延长线上一点,连接,过点作,垂足为点,与交于点.
(1)如图甲,求证:;
(2)如图乙,连接,若,,求的值.
21.(8分)如图,已知AB是⊙O的直径,BD是⊙O的弦,延长BD到C,使DC=BD,连接AC,过点D作DE⊥AC,垂足为E.
(1)求证:AB=AC;
(2)求证:DE是⊙O的切线;
(3)若⊙O的半径为6,∠BAC=60°,则DE=________.
22.(10分)如图,有一座圆弧形拱桥,它的跨度为,拱高为,当洪水泛滥到跨度只有时,就要采取紧急措施,若某次洪水中,拱顶离水面只有,即时,试通过计算说明是否需要采取紧急措施.
23.(10分)如图,AB是⊙O的直径,弦CD⊥AB于点E,G是上一动点,AG,DC的延长线交于点F,连接AC,AD,GC,GD.
(1)求证:∠FGC=∠AGD;
(2)若AD=1.
①当AC⊥DG,CG=2时,求sin∠ADG;
②当四边形ADCG面积最大时,求CF的长.
24.(10分)如图,抛物线y=ax2+x+c(a≠0)与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知点A的坐标为(﹣1,0),点C的坐标为(0,2).
(1)求抛物线的解析式;
(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;
(3)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.
25.(12分)如图,点的坐标为,点的坐标为.点的坐标为.
(1)请在直角坐标系中画出绕着点逆时针旋转后的图形.
(2)直接写出:点的坐标(________,________),
(3)点的坐标(________,________).
26.(12分)某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.
(1)如果果园既要让橙子的总产量达到60375个,又要确保每一棵橙子树接受到的阳光照射尽量少受影响,那么应该多种多少棵橙子树?
(2)增种多少棵橙子树,可以使果园橙子的总产量最多?最多为多少?
参考答案
一、选择题(每题4分,共48分)
1、D
2、A
3、C
4、A
5、D
6、B
7、B
8、A
9、B
10、D
11、B
12、D
二、填空题(每题4分,共24分)
13、
14、1
15、
16、3;
17、x≠1
18、 (4,7) (2n﹣1,2n﹣1)
三、解答题(共78分)
19、(1)y=﹣x2﹣x+1;(2)当h=3时,△AEF的面积最大,最大面积是 .(3)存在,当h=时,点D的坐标为(,);当h=时,点D的坐标为(,).
20、(1)证明见解析;(2).
21、(1)见解析;(2)见解析;(3).
22、不需要采取紧急措施,理由详见解析.
23、(1)证明见解析;(2)①sin∠ADG=;②CF=1.
24、(1)y=﹣x2+x+2(2)(,4)或(,)或(,﹣)(3)(2,1)
25、 (1)见解析;(2)-4.2;(3)-1.3.
26、(1)应该多种5棵橙子树;(2)增种10棵橙子树,可以使果园橙子的总产量最多.最多为60500个.
相关试卷
这是一份新疆乌鲁木齐市名校2023-2024学年九上数学期末联考模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔,P关于原点对称的点的坐标是,下列命题中,真命题是等内容,欢迎下载使用。
这是一份2023-2024学年山东省滨州市卓越数学九上期末调研模拟试题含答案,共7页。试卷主要包含了一元二次方程的解为等内容,欢迎下载使用。
这是一份2023-2024学年山东省滨州市名校数学九年级第一学期期末联考试题含答案,共8页。试卷主要包含了答题时请按要求用笔,已知二次函数,则下列说法等内容,欢迎下载使用。