山东省济宁市第十三中学2023-2024学年数学九上期末达标检测试题含答案
展开
这是一份山东省济宁市第十三中学2023-2024学年数学九上期末达标检测试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,下列事件中,是随机事件的是,二次函数图象的顶点坐标是等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1.下列图形都是由同样大小的五角星按一定的规律组成,其中第①个图形一共有2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,…,则第⑦个图形中五角星的个数为( )
A.90B.94C.98D.102
2.二次函数y=(x﹣4)2+2图象的顶点坐标是( )
A.(﹣4,2)B.(4,﹣2)C.(4,2)D.(﹣4,﹣2)
3.已知2x=5y(y≠0),则下列比例式成立的是( )
A.B.C.D.
4.如图,在菱形ABCD中,点E,F分别在AB,CD上,且,连接EF交BD于点O连接AO.若,,则的度数为( )
A.50°B.55°C.65°D.75°
5.已知正多边形的边心距与边长的比为,则此正多边形为( )
A.正三角形B.正方形C.正六边形D.正十二边形
6.下列事件中,是随机事件的是( )
A.任意画一个三角形,其内角和为180°B.经过有交通信号的路口,遇到红灯
C.太阳从东方升起D.任意一个五边形的外角和等于540°
7.如图,四边形中,,,,设的长为,四边形的面积为,则与之间的函数关系式是( )
A.B.C.D.
8.一个菱形的边长为,面积为,则该菱形的两条对角线的长度之和为( )
A.B.C.D.
9.二次函数图象的顶点坐标是( )
A.B.C.D.
10.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元,如果平均每月增长率为x,则由题意列方程应为( )
A.200(1+x)2=1000
B.200+200×2x=1000
C.200+200×3x=1000
D.200[1+(1+x)+(1+x)2]=1000
11.如图,AB是⊙O的直径,弦CD⊥AB于点E,且E为OB的中点,∠CDB=30°,CD=4,则阴影部分的面积为( )
A.πB.4πC.πD.π
12.如图,将一个Rt△ABC形状的楔子从木桩的底端点P处沿水平方向打入木桩底下,使木桩向上运动,已知楔子斜面的倾斜角为20°,若楔子沿水平方向前移8cm(如箭头所示),则木桩上升了( )
A.8tan20°B.C.8sin20°D.8cs20°
二、填空题(每题4分,共24分)
13.若圆锥的底面半径为3cm,高为4cm,则它的侧面展开图的面积为_____cm1.
14.方程x2=8x的根是______.
15.如图,在的同侧,,点为的中点,若,则的最大值是_____.
16.已知 x1、x2 是关于 x 的方程 x2+4x5=0的两个根,则x1 x2=_____.
17.如图是圆心角为,半径为的扇形,其周长为_____________.
18.关于x的方程x2﹣3x﹣m=0的两实数根为x1,x2,且,则m的值为_____.
三、解答题(共78分)
19.(8分)如图,已知一次函数与反比例函数的图象交于A,B两点.
(1)求的面积;
(2)观察图象,可知一次函数值小于反比例函数值的x的取值范围是 .
20.(8分)如图,A(4,3)是反比例函数y=在第一象限图象上一点,连接OA,过A作AB∥x轴,截取AB=OA(B在A右侧),连接OB,交反比例函数y=的图象于点P.
(1)求反比例函数y=的表达式;
(2)求点B的坐标;
(3)求△OAP的面积.
21.(8分)某商店购进一批成本为每件40元的商品,经调查发现,该商品每天的销售量(件与销售单价(元之间满足一次函数关系,其图象如图所示.
(1)求该商品每天的销售量与销售单价之间的函数关系式;
(2)若商店要使销售该商品每天获得的利润等于1000元,每天的销售量应为多少件?
(3)若商店按单价不低于成本价,且不高于65元销售,则销售单价定为多少元时,才能使销售该商品每天获得的利润最大?最大利润是多少元?
22.(10分)如图,在中,,,.动点从点出发,沿线段向终点以/的速度运动,同时动点从点出发,沿折线以/的速度向终点运动,当有一点到达终点时,另一点也停止运动,以、为邻边作设▱与重叠部分图形的面积为点运动的时间为.
(1)当点在边上时,求的长(用含的代数式表示);
(2)当点落在线段上时,求的值;
(3)求与之间的函数关系式,并写出自变量的取值范围.
23.(10分)如图,已知二次函数的图象经过点,.
(1)求的值;
(2)直接写出不等式的解.
24.(10分)已知在矩形中,,.是对角线上的一个动点(点不与点,重合),过点 作,交射线于点.联结,画,交于点.设,.
(1)当点,,在一条直线上时,求的面积;
(2)如图1所示,当点在边上时,求关于的函数解析式,并写出函数定义域;
(3)联结,若,请直接写出的长.
25.(12分)一个四位数,记千位数字与个位数字之和为,十位数字与百位数字之和为,如果,那么称这个四位数为“对称数”
最小的“对称数”为 ;四位数与之和为最大的“对称数”,则的值为 ;
一个四位的“对称数”,它的百位数字是千位数字的倍,个位数字与十位数字之和为,且千位数字使得不等式组恰有个整数解,求出所有满足条件的“对称数”的值.
26.(12分)我们不妨约定:如图①,若点D在△ABC的边AB上,且满足∠ACD=∠B(或∠BCD=∠A),则称满足这样条件的点为△ABC边AB上的“理想点”.
(1)如图①,若点D是△ABC的边AB的中点,AC=,AB=4.试判断点D是不是△ABC边AB上的“理想点”,并说明理由.
(2)如图②,在⊙O中,AB为直径,且AB=5,AC=4.若点D是△ABC边AB上的“理想点”,求CD的长.
(3)如图③,已知平面直角坐标系中,点A(0,2),B(0,-3),C为x轴正半轴上一点,且满足∠ACB=45°,在y轴上是否存在一点D,使点A是B,C,D三点围成的三角形的“理想点”,若存在,请求出点D的坐标;若不存在,请说明理由.
参考答案
一、选择题(每题4分,共48分)
1、C
2、C
3、B
4、C
5、B
6、B
7、C
8、C
9、B
10、D
11、D
12、A
二、填空题(每题4分,共24分)
13、15
14、x1=0,x2=1
15、14
16、-1
17、
18、-1.
三、解答题(共78分)
19、(1)4;(1)或
20、(1)反比例函数解析式为y=;(2)点B的坐标为(9,3);(3)△OAP的面积=1.
21、(1)y=-2x+200;(2)100件或20件;(3)销售单价定为65元时,该超市每天的利润最大,最大利润1750元
22、(1);(2);(3)详见解析
23、(1),;(2)
24、(1);(2);(3)或.
25、(1)1010;7979;(2)
26、(1)是,理由见解析;(2);(3)D(0,42)或D(0,6)
相关试卷
这是一份山东省邹平市2023-2024学年九上数学期末达标检测模拟试题含答案,共9页。试卷主要包含了答题时请按要求用笔,某反比例函数的图象经过点,二次函数y=﹣,已知的图象如图,则和的图象为等内容,欢迎下载使用。
这是一份山东省王浩屯中学2023-2024学年九上数学期末达标检测试题含答案,共9页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
这是一份2023-2024学年山东省高密市九上数学期末达标检测模拟试题含答案,共8页。试卷主要包含了两个相似三角形的面积比是9,下列说法正确的是,下列计算正确的是等内容,欢迎下载使用。