广东省中学山市第一中学2023-2024学年九上数学期末质量跟踪监视模拟试题含答案
展开
这是一份广东省中学山市第一中学2023-2024学年九上数学期末质量跟踪监视模拟试题含答案,共9页。试卷主要包含了考生必须保证答题卡的整洁,反比例函数y=的图象位于等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1.如图所示的两个四边形相似,则α的度数是( )
A.60°B.75°C.87°D.120°
2.关于的一元二次方程有一个根是﹣1,若二次函数的图象的顶点在第一象限,设,则的取值范围是( )
A.B.C.D.
3.(11·大连)某农科院对甲、乙两种甜玉米各用10块相同条件的试验田进行试验,
得到两个品种每公顷产量的两组数据,其方差分别为s甲2=0.002、s乙2=0.03,则 ( )
A.甲比乙的产量稳定B.乙比甲的产量稳定
C.甲、乙的产量一样稳定D.无法确定哪一品种的产量更稳定
4.小丽参加学校“庆元旦,迎新年演唱比赛,赛后小丽把七位评委所合的分数进行处理,得到平均数、中位数,众数,方差,如果把这七个数据去掉一个最高分和一个最低分,则数据一定不发发生变化的是 ( )
A.平均数B.众数C.方差D.中位数
5.如图,为的切线,切点为,连接,与交于点,延长与交于点,连接,若,则的度数为( )
A.B.C.D.
6.如图,在Rt△ABC中,∠ACB=900,CD⊥AB于点D,BC=3,AC=4,tan∠BCD的值为( )
A.;B.;C.;D.;
7.如图所示,∠APB=30°,O为PA上一点,且PO=6,以点O为圆心,半径为3的圆与PB的位置关系是( )
A.相离B.相切
C.相交D.相切、相离或相交
8.反比例函数y=的图象位于( )
A.第一、三象限B.第二、三象限
C.第一、二象限D.第二、四象限
9.如图,在矩形中,,的平分线交边于点,于点,连接并延长交边于点,连接交于点,给出下列命题:
(1)(2)(3)(4)
其中正确命题的个数是( )
A.B.C.D.
10.某农科院对甲、乙两种甜玉米各用10块相同条件的试验田进行试验,得到两个品种每亩产量的两组数据,其方差分别为,,则 ( )
A.甲比乙的产量稳定B.乙比甲的产量稳定
C.甲、乙的产量一样稳定D.无法确定哪一品种的产量更稳定
11.为了解我县目前九年级学生对中考体育的重视程度,从全县5千多名九年级的学生中抽取200名学生作为样本,对其进行中考体育项目的测试,200名学生的体育平均成绩为40分则我县目前九年级学生中考体育水平大概在( )
A.40分B.200分C.5000D.以上都有可能
12.下列各组中的四条线段成比例的是( )
A.4cm,2cm,1cm,3cm
B.1cm,2cm,3cm,5cm
C.3cm,4cm,5cm,6cm
D.1cm,2cm,2cm,4cm
二、填空题(每题4分,共24分)
13.如图,在矩形ABCD中,AD=2,CD=1,连接AC,以对角线AC为边,按逆时针方向作矩形ABCD的相似矩形AB1C1C,再连接AC1,以对角线AC1为边作矩形AB1C1C的相似矩形AB2C2C1,,按此规律继续下去,则矩形AB2019C2019C2018的面积为_____.
14.如图,港口A在观测站 O的正东方向,OA=4km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达 B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船与观测站之间的距离(即OB的长)为 _____km.
15.若关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0有一个根为0,则m的值为_____.
16.如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形EBF的半径为2,圆心角为60°,则图中阴影部分的面积是_____.
17.光线从空气射入水中会发生折射现象,发生折射时,满足的折射定律如图①所示:折射率(代表入射角,代表折射角).小明为了观察光线的折射现象,设计了图②所示的实验;通过细管可以看见水底的物块,但从细管穿过的直铁丝,却碰不上物块,图③是实验的示意图,点A,C,B在同一直线上,测得,则光线从空射入水中的折射率n等于________.
18.若用αn表示正n边形的中心角,则边长为4的正十二边形的中心角是____.
三、解答题(共78分)
19.(8分)某山区不仅有美丽风光,也有许多令人喜爱的土特产,为实现脱贫奔小康,某村组织村民加工包装土特产销售给游客,以增加村民收入.已知某种士特产每袋成本10元.试销阶段每袋的销售价x(元)与该士特产的日销售量y(袋)之间的关系如表:
若日销售量y是销售价x的一次函数,试求:
(1)日销售量y(袋)与销售价x(元)的函数关系式;
(2)假设后续销售情况与试销阶段效果相同,要使这种土特产每日销售的利润最大,每袋的销售价应定为多少元?每日销售的最大利润是多少元?
20.(8分)如图,某居民楼的前面有一围墙,在点处测得楼顶的仰角为,在处测得楼顶的仰角为,且的高度为2米,之间的距离为20米(,,在同一条直线上).
(1)求居民楼的高度.
(2)请你求出、两点之间的距离.(参考数据:,,,结果保留整数)
21.(8分)如图,某市有一块长为(3a+b)米、宽为(2a+b)米的长方形地,规划部门计划将阴影部分进行绿化,中间将修建一座边长为(a+b)米的正方形雕像.
(1)试用含a、b的式子表示绿化部分的面积(结果要化简).
(2)若a=3,b=2,请求出绿化部分的面积.
22.(10分)在平面直角坐标系xOy(如图)中,抛物线y=ax2+bx+2经过点A(4,0)、B(2,2),与y轴的交点为C.
(1)试求这个抛物线的表达式;
(2)如果这个抛物线的顶点为M,求△AMC的面积;
(3)如果这个抛物线的对称轴与直线BC交于点D,点E在线段AB上,且∠DOE=45°,求点E的坐标.
23.(10分)如图,已知抛物线经过点和点,与轴交于点.
(1)求此抛物线的解析式;
(2)若点是直线下方的抛物线上一动点(不点,重合),过点作轴的平行线交直线于点,设点的横坐标为.
①用含的代数式表示线段的长;
②连接,,求的面积最大时点的坐标;
(3)设抛物线的对称轴与交于点,点是抛物线的对称轴上一点,为轴上一点,是否存在这样的点和点,使得以点、、、为顶点的四边形是菱形?如果存在,请直接写出点的坐标;如果不存在,请说明理由.
24.(10分)如图,为等腰三角形,,是底边的中点,与腰相切于点.
(1)求证:与相切;
(2)已知,,求的半径.
25.(12分)解方程:
(1)2x2+3x﹣1=0
(2)
26.(12分)我们把对角线互相垂直的四边形叫做垂直四边形.
(1)如图1,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂直四边形吗?请说明理由;
(2)如图2,四边形ABCD是垂直四边形,求证:AD2+BC2=AB2+CD2;
(3)如图3,Rt△ABC中,∠ACB=90°,分别以AC、AB为边向外作正方形ACFG和正方形ABDE,连接CE,BG,GE,已知AC=4,BC=3,求GE长.
参考答案
一、选择题(每题4分,共48分)
1、C
2、D
3、A
4、D
5、D
6、A
7、C
8、A
9、D
10、B
11、A
12、D
二、填空题(每题4分,共24分)
13、
14、1+1
15、﹣1.
16、
17、
18、30º
三、解答题(共78分)
19、(1)y=﹣x+40;(2)要使这种土特产每日销售的利润最大,每袋的销售价应定为25元,每日销售的最大利润是225元.
20、(1)居民楼的高约为22米;(2)、之间的距离约为48米
21、(1)5a2+3ab;(2)63.
22、(1)y=;(1);(3)点E的坐标为(3,1).
23、(1)y=x2﹣4x+1;(2)①用含m的代数式表示线段PD的长为﹣m2+1m;②△PBC的面积最大时点P的坐标为(,﹣);(1)存在这样的点M和点N,使得以点C、E、M、N为顶点的四边形是菱形.点M的坐标为M1(2,1),M2(2,1﹣2),M1(2,1+2).
24、(1)详见解析;(2)⊙O的半径为.
25、(1)x1=,x2=;(2)x=
26、(1)四边形ABCD是垂直四边形;理由见解析;(2)见解析;(3)GE=
x(元)
15
20
30
…
y(袋)
25
20
10
…
相关试卷
这是一份2023-2024学年广东省汕头市苏湾中学九上数学期末质量跟踪监视模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,下列说法正确的是,若两个相似三角形的周长之比是1等内容,欢迎下载使用。
这是一份2023-2024学年广东省广东实验中学九上数学期末质量跟踪监视试题含答案,共8页。试卷主要包含了答题时请按要求用笔,将点A等内容,欢迎下载使用。
这是一份重庆市实验中学2023-2024学年九上数学期末质量跟踪监视模拟试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,下列事件中,是随机事件的是等内容,欢迎下载使用。