山西省吕梁市名校2023-2024学年数学九年级第一学期期末监测试题含答案
展开
这是一份山西省吕梁市名校2023-2024学年数学九年级第一学期期末监测试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,﹣的绝对值为,的值等于等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1.如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x﹣k)2+h.已知球与D点的水平距离为6m时,达到最高2.6m,球网与D点的水平距离为9m.高度为2.43m,球场的边界距O点的水平距离为18m,则下列判断正确的是( )
A.球不会过网B.球会过球网但不会出界
C.球会过球网并会出界D.无法确定
2.如图,某物体由上下两个圆锥组成,其轴截面中,,.若下部圆锥的侧面积为1,则上部圆锥的侧面积为( )
A.B.C.D.
3.用配方法解方程x2+6x+4=0,下列变形正确的是( )
A.(x+3)2=﹣4B.(x﹣3)2=4C.(x+3)2=5D.(x+3)2=±
4.如图,某小区计划在一块长为31m,宽为10m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m1.若设道路的宽为xm,则下面所列方程正确的是( )
A.(31﹣1x)(10﹣x)=570B.31x+1×10x=31×10﹣570
C.(31﹣x)(10﹣x)=31×10﹣570D.31x+1×10x﹣1x1=570
5.有一等腰三角形纸片ABC,AB=AC,裁剪方式及相关数据如图所示,则得到的甲、乙、丙、丁四张纸片中,面积最大的是( )
A.甲B.乙C.丙D.丁
6.如图为二次函数的图象,在下列说法中:
①;②方程的根是③ ;④当时,随的增大而增大;⑤;⑥,正确的说法有( )
A.B.C.D.
7.如图 ,已知△ABC 中,∠C=90°,AC=BC=,将△ABC 绕点 A 顺时针方向旋转 60°得到△A′B′C′的位置,连接 C′B,则 C′B 的长为 ( )
A.2-B.C.D.1
8.﹣的绝对值为( )
A.﹣2B.﹣C.D.1
9.如图,将绕点逆时针旋转,旋转角为,得到,这时点,,恰好在同一直线上,下列结论一定正确的是( )
A.B.C.D.
10.的值等于( )
A.B.C.1D.
11.下列关系式中,y是x的反比例函数的是( )
A.y=4xB.=3C.y=﹣D.y=x2﹣1
12.二次函数y=ax2+bx+c(a≠0)的图象如图所示,那么下列说法正确的是( )
A.a>0,b>0,c>0B.a<0,b>0,c>0C.a<0,b>0,c<0D.a<0,b<0,c>0
二、填空题(每题4分,共24分)
13.比较大小:________.(填“,或”)
14.已知扇形的圆心角为120°,弧长为4π,则扇形的面积是___.
15.方程2x2﹣6=0的解是_____.
16.图形之间的变换关系包括平移、______、轴对称以及它们的组合变换.
17.方程2x2-6x-1=0的负数根为___________.
18.在测量旗杆高度的活动课中,某小组学生于同一时刻在阳光下对一根直立于平地的竹竿及其影长和旗杆的影长进行了测量,得到的数据如图所示,根据这些数据计算出旗杆的高度为_________m.
三、解答题(共78分)
19.(8分)如图,在边长为1的正方形网格中,△ABC的顶点均在格点上,建立平面直角坐标系后,点A的坐标为(﹣4,1),点B的坐标为(﹣1,1).
(1)画出△ABC绕点B逆时针旋转90°后得到的△A1BC1;
(1)画出△ABC关于原点O对称的△A1B1C1.
20.(8分)如图,在平面直角坐标系中,过点A(2,0)的直线l与y轴交于点B,tan∠OAB=,直线l上的点P位于y轴左侧,且到y轴的距离为1.
(1)求直线l的表达式;
(2)若反比例函数的图象经过点P,求m的值.
21.(8分)如图1,抛物线y=﹣x2+bx+c交x轴于点A(- 4,0)和点B,交y轴于点C(0,4).
(1)求抛物线的函数表达式;
(2)如图2,设点Q是线段AC上的一动点,作DQ⊥x轴,交抛物线于点D,当△ADC面积有最大值时,在抛物线对称轴上找一点M,使DM+AM的值最小,求出此时M的坐标;
(3)点Q在直线AC上的运动过程中,是否存在点Q,使△BQC为等腰三角形?若存在,直接写出点Q的坐标;若不存在,请说明理由.
22.(10分)如图,中,,,,解这个直角三角形.
23.(10分)如图,在中,,,,点分别是边的中点,连接.将绕点顺时针方向旋转,记旋转角为.
① ②
③ ④
(1)问题发现:当时, .
(2)拓展探究:试判断:当时,的大小有无变化?请仅就图②的情况给出证明.
(3)问题解决:当旋转至三点共线时,如图③,图④,直接写出线段的长.
24.(10分)如图所示,在中,点在边上,联结,,交边于点,交延长线于点,且.
(1)求证:;
(2)求证:.
25.(12分)如图,是半径为的上的定点,动点从出发,以的速度沿圆周逆时针运动,当点回到地立即停止运动.
(1)如果,求点运动的时间;
(2)如果点是延长线上的一点,,那么当点运动的时间为时,判断直线与的位置关系,并说明理由.
26.(12分)为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.
(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;
(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?
(3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?
参考答案
一、选择题(每题4分,共48分)
1、C
2、C
3、C
4、A
5、D
6、D
7、C
8、C
9、C
10、A
11、C
12、B
二、填空题(每题4分,共24分)
13、
相关试卷
这是一份山西省吕梁市文水县2023-2024学年数学九上期末学业质量监测试题含答案,共8页。试卷主要包含了若y=是二次函数,则m等于等内容,欢迎下载使用。
这是一份2023-2024学年山西省运城数学九年级第一学期期末监测模拟试题含答案,共8页。试卷主要包含了若不等式组无解,则的取值范围为,关于二次函数,下列说法错误的是,若,,则的值为等内容,欢迎下载使用。
这是一份山西省吕梁市柳林县2023-2024学年数学九上期末监测模拟试题含答案,共8页。试卷主要包含了下列事件中,是随机事件的是,抛物线的顶点坐标是等内容,欢迎下载使用。