上海市复旦初级中学2023-2024学年数学九上期末学业水平测试模拟试题含答案
展开
这是一份上海市复旦初级中学2023-2024学年数学九上期末学业水平测试模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1.如图,以为顶点的三角形与以为顶点的三角形相似,则这两个三角形的相似比为( )
A.2:1B.3:1C.4:3D.3:2
2.若反比例函数的图象在每一个信息内的值随的增大而增大,则关于的函数的图象经过( )
A.第一、三象限B.第二、四象限
C.第一、三、四象限D.第一、二、四象限
3.抛物线y=3(x﹣2)2+5的顶点坐标是( )
A.(﹣2,5)B.(﹣2,﹣5)C.(2,5)D.(2,﹣5)
4.已知抛物线y=x2+3向左平移2个单位,那么平移后的抛物线表达式是( )
A.y=(x+2)2+3 B.y=(x﹣2)2+3 C.y=x2+1 D.y=x2+5
5.关于反比例函数,下列说法错误的是( )
A.随的增大而减小B.图象位于一、三象限
C.图象过点D.图象关于原点成中心对称
6.如图,这是由5个大小相同的整体搭成的几何体,该几何体的左视图是 ( )
A.B.C.D.
7.已知反比例函数的解析式为,则的取值范围是
A.B.C.D.
8.为了解某地区九年级男生的身高情况,随取了该区100名九年级男生,他们的身高x(cm)统计如根据以上结果,抽查该地区一名九年级男生,估计他的身高不高于180cm的概率是( )
A.0.05B.0.38C.0.57D.0.95
9.已知为常数,点在第二象限,则关于的方程根的情况是( )
A.有两个相等的实数根B.有两个不相等的实数根
C.没有实数根D.无法判断
10.已知a是方程x2+3x﹣1=0的根,则代数式a2+3a+2019的值是( )
A.2020B.﹣2020C.2021D.﹣2021
11.一元二次方程的常数项是( )
A.B.C.D.
12.如图,在矩形ABCD中,对角线AC,BD交与点O.已知∠AOB=60°,AC=16,则图中长度为8的线段有( )
A.2条B.4条
C.5条D.6条
二、填空题(每题4分,共24分)
13.如图,将面积为32的矩形ABCD沿对角线BD折叠,点A的对应点为点P,连接AP交BC于点E.若BE=,则AP的长为_____.
14.若,则的值为_____.
15.从一批节能灯中随机抽取40只进行检查,发现次品2只,则在这批节能灯中随机抽取一只是次品的概率为_______.
16.如图,正方形的边长为,点为的中点,点,分别在边,上(点不与点,重合,点不与点,重合),连接,,若以,,为顶点的三角形与相似,且的面积为1,则的长为______.
17.如图是一个正方形及其内切圆,正方形的边长为4,随机地往正方形内投一粒米,落在圆内的概率是______.
18.微信给甲、乙、丙三人,若微信的顺序是任意的,则第一个微信给甲的概率为_____.
三、解答题(共78分)
19.(8分)在数学活动课上,同学们用一根长为1米的细绳围矩形.
(1)小明围出了一个面积为600cm2的矩形,请你算一算,她围成的矩形的长和宽各是多少?
(2)小颖想用这根细绳围成一个面积尽可能大的矩形,请你用所学过的知识帮他分析应该怎么围,并求出最大面积.
20.(8分)一只不透明的袋子中装有个质地、大小均相同的小球,这些小球分别标有数字,甲、乙两人每次同时从袋中各随机摸出个球,并计算摸出的这个小球上数字之和,记录后都将小球放回袋中搅匀,进行重复实验.实验数据如下表
解答下列问题:
如果实验继续进行下去,根据上表数据,出现“和为”的频率将稳定在它的概率附近.估计出现“和为”的概率是_______;
如果摸出的这两个小球上数字之和为的概率是,那么的值可以取吗?请用列表法或画树状图法说明理由;如果的值不可以取,请写出一个符合要求的值.
21.(8分)如图,在平行四边形中,连接对角线,延长至点,使,连接,分别交,于点,.
(1)求证:;
(2)若,求的长.
22.(10分)图①,图②都是8×8的正方形网格,每个小正方形的顶点称为格点.线段OM,ON的端点均在格点上.在图①,图②给定的网格中以OM,ON为邻边各画一个四边形,使第四个顶点在格点上.要求:
(1)图①中所画的四边形是中心对称图形;
(2)图②中所画的四边形是轴对称图形;
(3)所画的两个四边形不全等.
23.(10分)某商场经销一种高档水果,原价每千克50元.
(1)连续两次降价后每千克32元,若每次下降的百分率相同,求每次下降的百分率;
(2)若每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,商场决定采取适当的涨价措施,若每千克涨价1元,则日销售量将减少20千克,那么每千克水果应涨价多少元时,商场获得的总利润(元)最大,最大是多少元?
24.(10分)如图,点C在⊙O上,联结CO并延长交弦AB于点D,,联结AC、OB,若CD=40,AC=20.
(1)求弦AB的长;
(2)求sin∠ABO的值.
25.(12分)阅读下列材料:
小辉和小乐一起在学校寄宿三年了,毕业之际,他们想合理分配共同拥有的三件“财产”:一个电子词典、一台迷你唱机、一套珍藏版小说.他们本着“在尊重各自的价值偏好基础上进行等值均分”的原则,设计了分配方案,步骤如下(相应的数额如表二所示):
①每人各自定出每件物品在心中所估计的价值;
②计算每人所有物品估价总值和均分值(均分:按总人数均分各自估价总值);
③每件物品归估价较高者所有;
④计算差额(差额:每人所得物品的估价总值与均分值之差);
⑤小乐拿225元给小辉,仍“剩下”的300元每人均分.
依此方案,两人分配的结果是:小辉拿到了珍藏版小说和375元钱,小乐拿到的电子词典和迷你唱机,但要付出375元钱.
(1)甲、乙、丙三人分配A,B,C三件物品,三人的估价如表三所示,依照上述方案,请直接写出分配结果;
(2)小红和小丽分配D,E两件物品,两人的估价如表四所示(其中0<m-n<15).按照上述方案的前四步操作后,接下来,依据“在尊重各自的价值偏好基础上进行等值均分”的原则,该怎么分配较为合理?请完成表四,并写出分配结果.(说明:本题表格中的数值的单位均为“元”)
26.(12分)计算
(1)
(2)
参考答案
一、选择题(每题4分,共48分)
1、A
2、D
3、C
4、A
5、A
6、A
7、C
8、D
9、B
10、A
11、A
12、D
二、填空题(每题4分,共24分)
13、
14、 .
15、
16、1或1
17、
18、
三、解答题(共78分)
19、(1)20,30;(2)用这根细绳围成一个边长为25㎝的正方形时,其面积最大,最大面积是625
20、(1);(2)的值可以为其中一个.
21、(1)见解析;(1)1
22、(1)见解析;(2)见解析;(3)见解析
23、(1)每次下降的百分率为20%;(2)每千克水果应涨价1.5元时,商场获得的利润最大,最大利润是6125元.
24、(1)40;(2)
25、(1)甲:拿到物品C和200元;乙:拿到:450元;丙:拿到物品A、B,付出650元;(2)详见解析.
26、(1)2;(2),
组别(cm)
x≤160
160<x≤170
170<x≤180
x>180
人数
15
42
38
5
摸球总次数
“和为”出现的频数
“和为”出现的频率
相关试卷
这是一份江南省郸城县2023-2024学年数学九上期末学业水平测试模拟试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。
这是一份上海市复旦初级中学2023-2024学年九上数学期末达标检测试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
这是一份河南省汝州2023-2024学年数学九上期末学业水平测试模拟试题含答案,共9页。试卷主要包含了考生要认真填写考场号和座位序号,如图,该几何体的主视图是,如图,点,在双曲线上,且,如图,在中,,则劣弧的度数为等内容,欢迎下载使用。