广州市东环中学2023-2024学年九年级数学第一学期期末统考模拟试题含答案
展开
这是一份广州市东环中学2023-2024学年九年级数学第一学期期末统考模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每题4分,共48分)
1.如图,已知A(2,1),现将A点绕原点O逆时针旋转90°得到A1,则A1的坐标是( )
A.(﹣1,2)B.(2,﹣1)C.(1,﹣2)D.(﹣2,1)
2.下列选项的图形是中心对称图形的是( )
A.B.C.D.
3.在平面直角坐标系中,把抛物线y=2x2绕原点旋转180°,再向右平移1个单位,向下平移2个单位,所得的抛物线的函数表达式为( )
A.y=2(x﹣1)2﹣2B.y=2(x+1)2﹣2
C.y=﹣2(x﹣1)2﹣2D.y=﹣2(x+1)2﹣2
4.如图,四边形ABCD是⊙O的内接四边形,若⊙O的半径为4,且∠B=2∠D,连接AC,则线段AC的长为( )
A.4B.4C.6D.8
5.如图,中,,,.将沿图示中的虚线剪开,按下面四种方式剪下的阴影三角形与原三角形相似的是( )
A.①②③B.②③④C.①②D.④
6.在Rt△ABC中,∠C=90°,AC=4,BC=3,则是
A.B.C.D.
7.从,0,π,,6这五个数中随机抽取一个数,抽到有理数的概率是( )
A.B.C.D.
8.如图所示,某宾馆大厅要铺圆环形的地毯,工人师傅只测量了与小圆相切的大圆的弦AB的长,就计算出了圆环的面积,若测量得AB的长为20米,则圆环的面积为( )
A.10平方米B.10π平方米C.100平方米D.100π平方米
9.已知关于x的一元二次方程有两个不相等的实数根,则k的取值范围是( )
A.k>-3B.k≥-3C.k≥0D.k≥1
10.如图,在矩形ABCD中(AD>AB),点E是BC上一点,且DE=DA,AF⊥DE,垂足为点F,在下列结论中,不一定正确的是( )
A.△AFD≌△DCEB.AF=AD
C.AB=AFD.BE=AD﹣DF
11.在△ABC中,∠C=90°.若AB=3,BC=1,则csB的值为( )
A.B.C.D.3
12.已知点(x1,y1)、(x2,y2)、(x3,y3)在反比例函数y=-的图象上,当x1<x2<0<x3时,y1,y2,y3的大小关系是( )
A.y1<y3<y2B.y2<y1<y3C.y3<y1<y2D.y3<y2<y1
二、填空题(每题4分,共24分)
13.如图,直线与两坐标轴相交于两点,点 为线段 上的动点,连结,过点 作 垂直于直线,垂足为 ,当点从点运动到点时,则点经过 的路径长为__________.
14.若=,则的值为______.
15.如图,AB是⊙O的弦,AB=4,点C是⊙O上的一个动点,且∠ACB=45°.若点M,N分别是AB,BC的中点,则MN长的最大值是_____.
16.2019年元旦前,无为米蒂广场开业期间,某品牌服装店举行购物酬宾抽奖活动,抽奖箱内共有15张奖券,4张面值100元,5张面值200元,6张面值300元,小明从中任抽2张,则中奖总值至少300元的概率为_____.
17.将抛物线y=-5x2先向左平移2个单位长度,再向下平移3个单位长度后,得到新的抛物线的表达式是________.
18.如图,AB是⊙O的直径,AC是⊙O的切线,连结OC交⊙O于点D,连结BD,∠C=30°,则∠ABD的度数是_____°.
三、解答题(共78分)
19.(8分)如图,Rt△ABC中,∠BAC=90°,AB=2,AC=4,D是BC边上一点,且BD=CD,G是BC边上的一动点,GE∥AD分别交直线AC,AB于F,E两点.
(1)AD= ;
(2)如图1,当GF=1时,求的值;
(3)如图2,随点G位置的改变,FG+EG是否为一个定值?如果是,求出这个定值,如果不是,请说明理由.
20.(8分)已知二次函数的图像与轴交于点,与轴的一个交点坐标是.
(1)求二次函数的解析式;
(2)当为何值时,.
21.(8分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别是A(﹣1,5)、B(﹣2,0)、C(﹣4,3).
(1)请在图中画出△ABC关于y轴对称的图形△A1B1C1:
(2)以点O为位似中心,将△ABC缩小为原来的,得到△A2B2C2,请在图中y轴的左侧画出△A2B2C2,并求出△A2B2C2的面积.
22.(10分)如图,于,以直径作,交于点恰有,连接.
(1)如图1,求证:;
(2)如图2,连接分别交,于点连接试探究与之间的数量关系,并说明理由;
(3)在(2)的基础上,若,求的长.
23.(10分)如图,外接,点在直径的延长线上,
(1)求证:是的切线;
(2)若,求的半径
24.(10分)如图,抛物线过点,,直线交抛物线于点,点的横坐标为,点是线段上的动点.
(1)求直线及抛物线的解析式;
(2)过点的直线垂直于轴,交抛物线于点,求线段的长度与的关系式,为何值时,最长?
(3)是否存在点使为等腰三角形,若存在请直接写出点的坐标,若不存在,请说明理由.
25.(12分)如图,在平面直角坐标系中,抛物线交轴、两点(在的左侧),且,,与轴交于,抛物线的顶点坐标为.
(1)求、两点的坐标;
(2)求抛物线的解析式;
(3)过点作直线轴,交轴于点,点是抛物线上、两点间的一个动点(点不与、两点重合),、与直线分别交于点、,当点运动时,是否为定值?若是,试求出该定值;若不是,请说明理由.
26.(12分)如图,已知AB为⊙O的直径,点E在⊙O上,∠EAB的平分线交⊙O于点C,过点C作AE的垂线,垂足为D,直线DC与AB的延长线交于点P.
(1)判断直线PC与⊙O的位置关系,并说明理由;
(2)若tan∠P=,AD=6,求线段AE的长.
参考答案
一、选择题(每题4分,共48分)
1、A
2、B
3、C
4、B
5、A
6、A
7、C
8、D
9、D
10、B
11、A
12、C
二、填空题(每题4分,共24分)
13、
14、4
15、
16、.
17、y=-5(x+2)2-1
18、30°
三、解答题(共78分)
19、(1)AD=;(2);(3)FG+EG是一个定值,为 .
20、(1)y= (x-1)2-9 ;(2)-2
相关试卷
这是一份2023-2024学年广州市东环中学数学九上期末考试模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
这是一份2023-2024学年广东省广州市东圃中学九年级数学第一学期期末学业质量监测模拟试题含答案,共7页。
这是一份2023-2024学年安徽省安庆市安庆二中学东数学九年级第一学期期末统考模拟试题含答案,共8页。