广州越秀区五校联考2023-2024学年九年级数学第一学期期末调研试题含答案
展开
这是一份广州越秀区五校联考2023-2024学年九年级数学第一学期期末调研试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,下列命题错误的是等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1.若二次函数y=ax2+bx+c的图象经过点(﹣1,0)和(3,0),则方程ax2+bx+c=0的解为( )
A.x1=﹣3,x2=﹣1B.x1=1,x2=3
C.x1=﹣1,x2=3D.x1=﹣3,x2=1
2.用配方法解一元二次方程x2+8x-9=0,下列配方法正确的是( )
A.B.C.D.
3.的值等于( )
A.B.C.D.
4.一元二次方程4x2﹣3x+=0根的情况是( )
A.没有实数根B.只有一个实数根
C.有两个相等的实数根D.有两个不相等的实数根
5.若一个扇形的圆心角是45°,面积为,则这个扇形的半径是( )
A.4B.C.D.
6.对于反比例函数,下列说法不正确的是( )
A.点(﹣2,﹣1)在它的图象上B.它的图象在第一、三象限
C.当x>0时,y随x的增大而增大D.当x<0时,y随x的增大而减小
7.将函数的图象向右平移个单位,再向下平移个单位,可得到的抛物线是( )
A.B.
C.D.
8.已知是单位向量,且,那么下列说法错误的是( )
A. ∥B.||=2C.||=﹣2||D. =﹣
9.如图,在△ABC中,AB=6,AC=8,BC=9,将△ABC沿图中的线段剪开,剪下的阴影三角形与原三角形不相似的是( )
A.B.
C.D.
10.下列命题错误的是 ( )
A.经过三个点一定可以作圆
B.经过切点且垂直于切线的直线必经过圆心
C.同圆或等圆中,相等的圆心角所对的弧相等
D.三角形的外心到三角形各顶点的距离相等
11.在同一平面直角坐标系中,函数 y=ax+b 与 y=bx2+ax 的图象可能是( )
A.B.C.D.
12.下列是世界各国银行的图标,其中不是轴对称图形的是( )
A.B.C.D.
二、填空题(每题4分,共24分)
13.如图所示,个边长为1的等边三角形,其中点,,,,…在同一条直线上,若记的面积为,的面积为,的面积为,…,的面积为,则______.
14.已知二次函数, 用配方法化为的形式为_________________,这个二次函数图像的顶点坐标为____________.
15.如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A、B、C、D分别是“果圆”与坐标轴的交点,AB为半圆的直径,抛物线的解析式为y=x2﹣2x﹣3,求这个“果圆”被y轴截得的线段CD的长.
16.若点(p,2)与(﹣3,q)关于原点对称,则p+q=__.
17.如图,五边形 ABCDE 是⊙O 的内接正五边形, AF 是⊙O 的直径,则∠ BDF 的度数是___________°.
18.如图,△ABC中,∠C=90°,,D为AC上一点,∠BDC=45°,CD=6,则AB=_______.
三、解答题(共78分)
19.(8分)汕头国际马拉松赛事设有“马拉松(公里)”,“半程马拉松(公里)”,“迷你马拉松(公里)”三个项目,小红和小青参加了该赛事的志愿者服务工作,组委会将志愿者随机分配到三个项目组.
(1)小红被分配到“马拉松(公里)”项目组的概率为___________.
(2)用树状图或列表法求小红和小青被分到同一个项目组进行志愿服务的概率.
20.(8分)如图,AB是⊙O的直径,弦CD⊥AB于点H,点F是上一点,连接AF交CD的延长线于点E.
(1)求证:△AFC∽△ACE;
(2)若AC=5,DC=6,当点F为的中点时,求AF的值.
21.(8分)在一个不透明的盒子中装有4张卡片,4张卡片的正面分别标有数字1、2、3、4,这些卡片除数字外都相同,将卡片搅匀.
(1)从盒子任意抽取一张卡片,恰好抽到标有奇数卡片的概率是 ;
(2)先从盒子中任意抽取一张卡片,再从余下的3张卡片中任意抽取一张卡片,求抽取的2张卡片标有数字之和大于5的概率(请用画树状图或列表等方法求解).
22.(10分)城市规划期间,欲拆除一电线杆AB,已知距电线杆AB水平距离14m的D处有一大坝,背水坡CD的坡度i=2:1,坝高CF为2m,在坝顶C处测得杆顶A的仰角为30°,D、E之间是宽为2m的人行道.
试问:在拆除电线杆AB时,为确保行人安全,是否需要将此人行道封上?请说明理由(在地面上,以点B为圆心,以AB长为半径的圆形区域为危险区域.)(≈1.732,≈1.414)
23.(10分)如图,抛物线与轴交于两点,与轴交于点,设抛物线的顶点为点.
(1)求该抛物线的解析式与顶点的坐标.
(2)试判断的形状,并说明理由.
(3)坐标轴上是否存在点,使得以为顶点的三角形与相似?若存在,请直接写出点的坐标;若不存在,请说明理由.
24.(10分)先化简,再求值.
,请从一元二次方程x2+2x-3=0的两个根中选择一个你喜欢的求值.
25.(12分)在“慈善一日捐”活动中,为了解某校学生的捐款情况,抽样调查了该校部分学生的捐款数(单位:元),并绘制成下面的统计图.
(1)本次调查的样本容量是________,这组数据的众数为________元;
(2)求这组数据的平均数;
(3)该校共有学生参与捐款,请你估计该校学生的捐款总数.
26.(12分)如图,已知A(﹣4,0),B(0,4),现以A点为位似中心,相似比为9:4,将OB向右侧放大,B点的对应点为C.
(1)求C点坐标及直线BC的解析式:
(2)点P从点A开始以每秒2个单位长度的速度匀速沿着x轴向右运动,若运动时间用t秒表示.△BCP的面积用S表示,请你直接写出S与t的函数关系.
参考答案
一、选择题(每题4分,共48分)
1、C
2、C
3、D
4、D
5、A
6、C
7、A
8、C
9、B
10、A
11、A
12、D
二、填空题(每题4分,共24分)
13、
14、
15、这个“果圆”被y轴截得的线段CD的长3+.
16、1
17、1
18、1
三、解答题(共78分)
19、(1);(2)图见解析,
20、(1)见解析;(2)
21、(1);(2)
22、不必封上人行道
23、(1),;(2)是直角三角形,理由见解析;(3)存在,.
24、,
25、(1),;(2)平均数为12元;(3)学生的捐款总数为7200元.
26、(1)C点坐标为,y=x+1;(2)S=5t(t>0)