武汉武昌区五校联考2023-2024学年九上数学期末联考试题含答案
展开
这是一份武汉武昌区五校联考2023-2024学年九上数学期末联考试题含答案,共8页。试卷主要包含了下列计算正确的是等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每题4分,共48分)
1.如图,正六边形的边长是1cm,则线段AB和CD之间的距离为( )
A.2cmB. cmC. cmD.1cm
2.在同一直角坐标系中,函数y=和y=kx﹣3的图象大致是( )
A.B.C.D.
3.如图,若二次函数的图象的对称轴是直线,则下列四个结论中,错误的是( ).
A.B.C.D.
4.如图,正方形OABC绕着点O逆时针旋转40°得到正方形ODEF,连接AF,则∠OFA的度数是( ).
A.15°B.20°C.25°D.30°
5.如图,在Rt△ABC中,∠ACB=90°,如果AC=3,AB=5,那么sinB等于( )
A.B.C.D.
6.在一个不透明的布袋中装有40个黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.30左右,则布袋中黄球可能有( )
A.12个B.14个C.18个D.28个
7.⊙O的半径为3,点P到圆心O的距离为5,点P与⊙O的位置关系是( )
A.无法确定B.点P在⊙O外C.点P在⊙O上D.点P在⊙O内
8.如图,矩形EFGO的两边在坐标轴上,点O为平面直角坐标系的原点,以y轴上的某一点为位似中心,作位似图形ABCD,且点B,F的坐标分别为(﹣4,4),(2,1),则位似中心的坐标为( )
A.(0,3)B.(0,2.5)C.(0,2)D.(0,1.5)
9.下列计算正确的是( )
A.B.C.÷D.
10.如图,将边长为6的正六边形铁丝框ABCDEF(面积记为S1)变形为以点D为圆心,CD为半径的扇形(面积记为S2),则S1与S2的关系为( )
A.S1=S2B.S1<S2C.S1=S2D.S1>S2
11.将抛物线y=x2﹣2向上平移1个单位后所得新抛物线的表达式为( )
A.y=﹣1B.y=﹣3C.y=﹣2D.y=﹣2
12.已知关于x的分式方程无解,关于y的不等式组的整数解之和恰好为10,则符合条件的所有m的和为( )
A.B.C.D.
二、填空题(每题4分,共24分)
13.如图,中,已知,,点在边上,.把线段绕着点逆时针旋转()度后,如果点恰好落在的边上,那么__________.
14.如图,在平面直角坐标系中,将正方形绕点逆时针旋转后得到正方形,依此方式,绕点连续旋转2019次得到正方形,如果点的坐标为(1,0),那么点的坐标为________.
15.若关于的方程的解为非负数,且关于的不等式组有且仅有5个整数解,则符合条件的所有整数的和是__________.
16.如图,Rt△ABC中,∠ACB=90°,BC=3,tanA=,将Rt△ABC绕点C顺时针旋转90°得到△DEC,点F是DE上一动点,以点F为圆心,FD为半径作⊙F,当FD=_____时,⊙F与Rt△ABC的边相切.
17.从实数中,任取两个数,正好都是无理数的概率为________.
18.如图,反比例函数y=的图象上有一动点A,连接AO并延长交图象的另一支于点B,在第二象限内有一点C,满足AC=BC,当点A运动时,点C始终在函数y=的图象上运动,tan∠CAB=2,则k=_____.
三、解答题(共78分)
19.(8分)综合与探究:
已知二次函数y=﹣x2+x+2的图象与x轴交于A,B两点(点B在点A的左侧),与y轴交于点C.
(1)求点A,B,C的坐标;
(2)求证:△ABC为直角三角形;
(3)如图,动点E,F同时从点A出发,其中点E以每秒2个单位长度的速度沿AB边向终点B运动,点F以每秒个单位长度的速度沿射线AC方向运动.当点F停止运动时,点E随之停止运动.设运动时间为t秒,连结EF,将△AEF沿EF翻折,使点A落在点D处,得到△DEF.当点F在AC上时,是否存在某一时刻t,使得△DCO≌△BCO?(点D不与点B重合)若存在,求出t的值;若不存在,请说明理由.
20.(8分)某次足球比赛,队员甲在前场给队友乙掷界外球.如图所示:已知两人相距8米,足球出手时的高度为2.4米,运行的路线是抛物线,当足球运行的水平距离为2米时,足球达到最大高度4米.请你根据图中所建坐标系,求出抛物线的表达式.
21.(8分)在一个不透明的袋子中,装有除颜色外都完全相同的4个红球和若干个黄球.
如果从袋中任意摸出一个球是红球的概率为,那么袋中有黄球多少个?
在的条件下如果从袋中摸出一个球记下颜色后放回,再摸出一个球,用列表或画树状图的方法求出两次摸出不同颜色球的概率.
22.(10分)如图,在平行四边形中,、分别为边、的中点,是对角线,过点作交的延长线于点.
(1)求证:;
(2)若,求证:四边形是菱形.
23.(10分)如图,AB、CD、EF是与路灯在同一直线上的三个等高的标杆,已知AB、CD在路灯光下的影长分别为BM、DN,在图中作出EF的影长.
24.(10分)已知布袋中有红、黄、蓝色小球各一个,用画树状图或列表的方法求下列事件的概率.
(1)如果摸出第一个球后,不放回,再摸出第二球,求摸出的球颜色是“一黄一蓝”的概率.
(2)随机从中摸出一个小球,记录下球的颜色后,把球放回,然后再摸出一个球,记录下球的颜色,求得到的球颜色是“一黄一蓝”的概率.
25.(12分)学校实施新课程改革以来,学生的学习能力有了很大提高.王老师为进一步了解本班学生自主学习、合作交流的现状,对该班部分学生进行调查,把调查结果分成四类(A:特别好,B:好,C:一般,D:较差)后,再将调查结果绘制成两幅不完整的统计图(如图1,2).请根据统计图解答下列问题:
(1)本次调查中,王老师一共调查了 名学生;
(2)将条形统计图补充完整;
(3)为了共同进步,王老师从被调查的A类和D类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率.
26.(12分)运城菖蒲酒产于山西垣曲.莒蒲洒远在汉代就已名噪酒坛,为历代帝王将相所喜爱,并被列为历代御膳香醪.菖蒲酒在市场的销售量会根据价格的变化而变化.菖蒲酒每瓶的成本价是元,某超市将售价定为元时,每天可以销售瓶,若售价每降低元,每天即可多销售瓶(售价不能高于元),若设每瓶降价元
用含的代数式表示菖蒲酒每天的销售量.
每瓶菖蒲酒的售价定为多少元时每天获取的利润最大?最大利润是多少?
参考答案
一、选择题(每题4分,共48分)
1、B
2、B
3、C
4、C
5、A
6、A
7、B
8、C
9、C
10、D
11、A
12、C
二、填空题(每题4分,共24分)
13、或
14、
15、1
16、或
17、
18、-1
三、解答题(共78分)
19、(1)点A的坐标为(4,0),点B的坐标为(﹣1,0),点C的坐标为(0,1);(1)证明见解析;(3)t=.
20、y= -0.4x2+4
21、(1)袋中有黄球有2个(2)
22、(1)见解析;(2)见解析
23、详见解析.
24、(1);(2)
25、(1)20;(2)作图见试题解析;(3).
26、(1);(2)售价定为元时,有最大利润,最大利润为元.
相关试卷
这是一份湖南省武汉武昌区五校联考2023-2024学年九年级数学第一学期期末复习检测模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔,方程x2=2x的解是,定义新运算等内容,欢迎下载使用。
这是一份湖北省武汉蔡甸区五校联考2023-2024学年九上数学期末质量跟踪监视试题含答案,共8页。试卷主要包含了下列图形,下列运算中,计算结果正确的是,近视镜镜片的焦距y等内容,欢迎下载使用。
这是一份武汉武昌区五校联考2023-2024学年数学九年级第一学期期末学业水平测试模拟试题含答案,共7页。试卷主要包含了抛物线的对称轴为,下列事件中,属于必然事件的是等内容,欢迎下载使用。