江苏省南京市名校2023-2024学年九年级数学第一学期期末质量检测试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1.下列关于抛物线y=2x2﹣3的说法,正确的是( )
A.抛物线的开口向下
B.抛物线的对称轴是直线x=1
C.抛物线与x轴有两个交点
D.抛物线y=2x2﹣3向左平移两个单位长度可得抛物线y=2(x﹣2)2﹣3
2.如图,一个直角梯形的堤坝坡长AB为6米,斜坡AB的坡角为60°,为了改善堤坝的稳固性,准备将其坡角改为45°,则调整后的斜坡AE的长度为( )
A.3米B.3米C.(3﹣2)米D.(3﹣3)米
3.如图,一条抛物线与轴相交于、两点(点在点的左侧),其顶点在线段上移动.若点、的坐标分别为、,点的横坐标的最大值为,则点的横坐标的最小值为( )
A.B.C.D.
4.下列运算中正确的是( )
A.a2÷a=aB.3a2+2a2=5a4
C.(ab2)3=ab5D.(a+b)2=a2+b2
5.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于C点,且对称轴为x=1,点B坐标为(﹣1,0),则下面的四个结论,其中正确的个数为( )
①2a+b=0②4a﹣2b+c<0③ac>0④当y>0时,﹣1<x<4
A.1个B.2个C.3个D.4个
6.下列一元二次方程中,有两个不相等的实数根的方程是( )
A.B.C.D.
7.已知:如图,菱形ABCD的周长为20cm,对角线AC=8cm,直线l从点A出发,以1cm/s的速度沿AC向右运动,直到过点C为止在运动过程中,直线l始终垂直于AC,若平移过程中直线l扫过的面积为S(cm2),直线l的运动时间为t(s),则下列最能反映S与t之间函数关系的图象是( )
A.B.
C.D.
8.如图,将边长为6的正六边形铁丝框ABCDEF(面积记为S1)变形为以点D为圆心,CD为半径的扇形(面积记为S2),则S1与S2的关系为( )
A.S1=S2B.S1<S2C.S1=S2D.S1>S2
9.已知是关于的反比例函数,则( )
A.B.C.D.为一切实数
10.如果关于x的一元二次方程k2x2-(2k+1)x+1=0有两个不相等的实数根,那么k的取值范围是( )
A.k>-B.k>-且C.k<-D.k-且
11.如图,D,E分别是△ABC的边AB,AC上的中点,CD与BE交于点O,则S△DOE:S△BOC的值为( )
A.B.C.D.
12.如图,四边形ABCD内接于⊙O,已知∠A=80°,则∠C的度数是( )
A.40°B.80°C.100°D.120°
二、填空题(每题4分,共24分)
13.若质量抽检时任抽一件西服成品为合格品的概率为0.9,则200件西服中大约有_____件合格品.
14.已知和是方程的两个实数根,则__________.
15.在△ABC中,已知(sinA-)2+│tanB-│=1.那么∠C=_________度.
16.关于x的一元二次方程x2+nx﹣12=0的一个解为x=3,则n=_____.
17.在△ABC中,分别以AB,AC为斜边作Rt△ABD和Rt△ACE,∠ADB=∠AEC=90°,∠ABD=∠ACE=30°,连接DE.若DE=5,则BC长为_____.
18.如图,在平面直角坐标系中,都是等腰直角三角形,点都在轴上,点与原点重合,点都在直线上,点在轴上,轴, 轴,若点的横坐标为﹣1,则点的纵坐标是_____.
三、解答题(共78分)
19.(8分)如图是某货站传送货物的平面示意图.为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由改为,已知原传送带长为米.
(1)求新传送带的长度;
(2)如果需要在货物着地点的左侧留出2米的通道,试判断距离点5米的货物是否需要挪走,并说明理由.(参考数据:,.)
20.(8分)数学活动课上,老师提出问题:如图1,有一张长,宽的长方形纸板,在纸板的四个角裁去四个相同的小正方形,然后把四边折起来,做成-一个无盖的盒子,问小正方形的边长为多少时,盒子的体积最大.下 面是探究过程,请补充完整:
(1)设小正方形的边长为,体积为,根据长方体的体积公式得到和的关系式 ;
(2)确定自变量的取值范围是
(3)列出与的几组对应值.
(4)在平面直角坐标系中,描出以补全后的表中各对对应值为坐标的点画出该函数的图象如图2,结合画出的函数图象,当小正方形的边长约为 时, 盒子的体积最大,最大值约为.(估读值时精确到)
21.(8分)解方程:x2+2x﹣1=1.
22.(10分)如图,在平面直角坐标系中,A ,B .
(1)作出与△OAB关于轴对称的△ ;
(2)将△OAB绕原点O顺时针旋转90°得到△,在图中作出△;
(3)△能否由△通过平移、轴对称或旋转中的某一种图形变换直接得到?如何得到?
23.(10分)图1是某小区入口实景图,图2是该入口抽象成的平面示意图.已知入口BC宽3.9米,门卫室外墙AB上的O点处装有一盏路灯,点O与地面BC的距离为3.3米,灯臂OM长为1.2米(灯罩长度忽略不计),∠AOM=60°.
(1)求点M到地面的距离;
(2)某搬家公司一辆总宽2.55米,总高3.5米的货车从该入口进入时,货车需与护栏CD保持0.65米的安全距离,此时,货车能否安全通过?若能,请通过计算说明;若不能,请说明理由.(参考数据:1.73,结果精确到0.01米)
24.(10分)如图,在平面直角坐标系中,将一块等腰直角三角板ABC放在第二象限,点C坐标为(﹣1,0),点A坐标为(0,2).一次函数y=kx+b的图象经过点B、C,反比例函数y=的图象经过点B.
(1)求一次函数和反比例函数的关系式;
(2)直接写出当x<0时,kx+b﹣<0的解集;
(3)在x轴上找一点M,使得AM+BM的值最小,直接写出点M的坐标和AM+BM的最小值.
25.(12分)如图,斜坡AF的坡度为5:12,斜坡AF上一棵与水平面垂直的大树BD在阳光照射下,在斜坡上的影长BC=6.5米,此时光线与水平线恰好成30°角,求大树BD的高.(结果精确的0.1米,参考数据≈1.414,≈1.732)
26.(12分)如图,点是反比例函数上一点,过点作轴于点,点为轴上一点,连接.
(1)求反比例函数的解析式;
(2)求的面积.
参考答案
一、选择题(每题4分,共48分)
1、C
2、A
3、C
4、A
5、B
6、D
7、B
8、D
9、B
10、B
11、C
12、C
二、填空题(每题4分,共24分)
13、1.
14、1
15、2
16、1
17、1
18、
三、解答题(共78分)
19、(1)新传送带AC的长度为8米;(2)距离B点5米的货物不需要挪走,理由见解析
20、(1);(2);(3)3,2;(4)0.55
21、.
22、(1)见解析;(2)见解析;(3)△可由△沿直线翻折得到
23、(1)3.9米;(2)货车能安全通过.
24、(1)y=﹣x﹣,y=﹣;(2)﹣3<x<0;(3)点M的坐标为(﹣2,0),AM+BM的最小值为3.
25、大树的高约为6.0米.
26、(1);(2)的面积为1.
···
···
江苏省宿迁市名校2023-2024学年九年级数学第一学期期末质量检测试题含答案: 这是一份江苏省宿迁市名校2023-2024学年九年级数学第一学期期末质量检测试题含答案,共8页。试卷主要包含了下列关系式中,是反比例函数的是,一元二次方程的根是,下列事件中是随机事件的是等内容,欢迎下载使用。
江苏省南京市三区联盟2023-2024学年数学九年级第一学期期末教学质量检测试题含答案: 这是一份江苏省南京市三区联盟2023-2024学年数学九年级第一学期期末教学质量检测试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,下列事件中,必然事件是等内容,欢迎下载使用。
2023-2024学年江苏省南京市数学九年级第一学期期末检测试题含答案: 这是一份2023-2024学年江苏省南京市数学九年级第一学期期末检测试题含答案,共8页。