江苏省泰州市泰兴市黄桥教育联盟2023-2024学年数学九年级第一学期期末预测试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每题4分,共48分)
1.如图为二次函数y=ax2+bx+c的图象,在下列说法中①ac>0;②方程ax2+bx+c=0的根是x1=﹣1,x2=3;③a+b+c<0;④当x>1时,y随x的增大而增大,正确的是( )
A.①③B.②④C.①②④D.②③④
2.如图,点A、点B是函数y=的图象上关于坐标原点对称的任意两点,BC∥x轴,AC∥y轴,△ABC的面积是4,则k的值是( )
A.-2B.±4C.2D.±2
3.方程x2﹣4x+5=0根的情况是( )
A.有两个不相等的实数根B.有两个相等的实数根
C.有一个实数根D.没有实数根
4.将抛物线y=2x2向左平移1个单位,再向上平移3个单位得到的抛物线,其解析式是( )
A.y=2(x+1)2+3B.y=2(x-1)2-3
C.y=2(x+1)2-3D.y=2(x-1)2+3
5.某人沿着有一定坡度的坡面前进了10米,此时他与水平地面的垂直距离为2米,则这个坡面的坡度为( )
A.1:2B.1:3C.1:D.:1
6.在日本核电站事故期间,我国某监测点监测到极微量的人工放射性核素碘一,其浓度为贝克/立方米,数据用科学记数法可表示为( )
A.B.C.D.
7.某钢铁厂一月份生产钢铁560吨,从二月份起,由于改进操作技术,使得第一季度共生产钢铁1850吨,问二、三月份平均每月的增长率是多少?若设二、三月份平均每月的增长率为x,则可得方程( )
A.B.
C.D.
8.河堤横断面如图所示,堤高BC=5米,迎水坡AB的坡比1:,则AC的长是( )
A.10米B.米C.15米D.米
9.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0;②b0;④2c–3b<0;⑤a+b>n(an+b)(n≠1),其中正确的结论有( )
A.2个B.3个C.4个D.5个
10.若,,为二次函数的图象上的三点,则,,的大小关系是( )
A.y1
A.袋中有形状、大小、质地完全一样的5个红球和1个白球,从中随机抽出一个球,一定是红球
B.天气预报“明天降水概率10%”,是指明天有10%的时间会下雨
C.某地发行一种福利彩票,中奖率是千分之一,那么,买这种彩票1000张,一定会中奖
D.连续掷一枚均匀硬币,若5次都是正面朝上,则第六次仍然可能正面朝上
12.如图,若二次函数的图象的对称轴为,与x轴的一个交点为,则:①二次函数的最大值为 ;②;③当时,y随x的增大而增大;④当时,,其中正确命题的个数是( )
A.1B.2C.3D.4
二、填空题(每题4分,共24分)
13.如图,已知的半径为2,内接于,,则__________.
14.已知关于的方程的一个解为,则m=_______.
15.二次函数的图象如图所示,则点在第__________象限.
16.已知二次函数的部分图象如图所示,则关于的一元二次方程的解为______________.
17.如图,四边形ABCD、AEFG都是正方形,且∠BAE=45°,连接BE并延长交DG于点H,若AB=4,AE=,则线段BH的长是_____.
18.若二次函数的图像与轴只有一个公共点,则实数_______.
三、解答题(共78分)
19.(8分)有四张正面分别标有数字1,2,3,4的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗均匀.
(1)随机抽取一张卡片,则抽到数字“2”的概率是___________;
(2)从四张卡片中随机抽取2张卡片,请用列表或画树状图的方法求抽到“数字和为5”的概率.
20.(8分)如图,平台AB高为12m,在B处测得楼房CD顶部点D的仰角为45°,底部点C的俯角为30°,求楼房CD的高度(=1.7).
21.(8分)已知:如图,在⊙O中,弦交于点,.
求证:.
22.(10分)如图,在正方形ABCD中,E为边AD上的点,点F在边CD上,且CF=3FD,∠BEF=90°
(1)求证:△ABE∽△DEF;
(2)若AB=4,延长EF交BC的延长线于点G,求BG的长
23.(10分)已知关于的一元二次方程 有实根.
(1)求的取值范围;
(2)求该方程的根.
24.(10分)若,且3a+2b﹣4c=9,求a+b﹣c的值是多少?
25.(12分)探究问题:
⑴方法感悟:
如图①,在正方形ABCD中,点E,F分别为DC,BC边上的点,且满足∠EAF=45°,连接EF,求证DE+BF=EF.
感悟解题方法,并完成下列填空:
将△ADE绕点A顺时针旋转90°得到△ABG,此时AB与AD重合,由旋转可得:
AB=AD,BG=DE, ∠1=∠2,∠ABG=∠D=90°,
∴∠ABG+∠ABF=90°+90°=180°,
因此,点G,B,F在同一条直线上.
∵∠EAF=45°
∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.
∵∠1=∠2,
∴∠1+∠3=45°.
即∠GAF=∠_________.
又AG=AE,AF=AF
∴△GAF≌_______.
∴_________=EF,故DE+BF=EF.
⑵方法迁移:
如图②,将沿斜边翻折得到△ADC,点E,F分别为DC,BC边上的点,且∠EAF=∠DAB.试猜想DE,BF,EF之间有何数量关系,并证明你的猜想.
⑶问题拓展:
如图③,在四边形ABCD中,AB=AD,E,F分别为DC,BC上的点,满足,试猜想当∠B与∠D满足什么关系时,可使得DE+BF=EF.请直接写出你的猜想(不必说明理由)
.
26.(12分)用适当的方法解下列一元二次方程:
(1)x2+4x﹣2=0;
(2)(x+2)2=3(x+2).
参考答案
一、选择题(每题4分,共48分)
1、D
2、C
3、D
4、A
5、A
6、A
7、D
8、B
9、B
10、B
11、D
12、B
二、填空题(每题4分,共24分)
13、
14、0
15、四
16、x1= -1, x2=1
17、
18、1
三、解答题(共78分)
19、(1);(2)P= .
20、32.2m.
21、证明见解析.
22、(1)详见解析;(2)1
23、(1);(2)
24、﹣1.
25、⑴EAF、△EAF、GF;⑵DE+BF=EF;⑶当∠B与∠D互补时,可使得DE+BF=EF.
26、(1)x=﹣2±;(2)x=﹣2或x=1
江苏省泰兴市黄桥教育联盟2023-2024学年九上数学期末预测试题含答案: 这是一份江苏省泰兴市黄桥教育联盟2023-2024学年九上数学期末预测试题含答案,共9页。试卷主要包含了下列说法中正确的有,下列事件中是必然发生的事件是,若,则代数式的值等内容,欢迎下载使用。
江苏省泰兴市黄桥教育联盟2023-2024学年数学八上期末质量检测模拟试题含答案: 这是一份江苏省泰兴市黄桥教育联盟2023-2024学年数学八上期末质量检测模拟试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,下列实数为无理数的是,下列各数,准确数是,若四边形ABCD中,∠A等内容,欢迎下载使用。
江苏省泰州市泰兴市黄桥教育联盟2023-2024学年八年级数学第一学期期末复习检测试题含答案: 这是一份江苏省泰州市泰兴市黄桥教育联盟2023-2024学年八年级数学第一学期期末复习检测试题含答案,共6页。试卷主要包含了的平方根是,实数不能写成的形式是,点P到x轴的距离是等内容,欢迎下载使用。