江苏省泰州市泰兴市长生中学2023-2024学年数学九年级第一学期期末检测试题含答案
展开这是一份江苏省泰州市泰兴市长生中学2023-2024学年数学九年级第一学期期末检测试题含答案,共9页。试卷主要包含了答题时请按要求用笔,已知,则等于,如图下列条件中不能判定的是等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每题4分,共48分)
1.不透明袋子中有个红球和个白球,这些球除颜色外无其他差别,从袋中随机取出个球,是红球的概率是( )
A.B.C.D.
2.如图,在△ABC中,点D、E、F分别在边AB、AC、BC上,且∠AED=∠B,再将下列四个选项中的一个作为条件,不一定能使得△ADE和△BDF相似的是( )
A.B.C.D.
3.已知函数y=ax2+bx+c(a≠1)的图象如图,给出下列4个结论:①abc>1; ②b2>4ac; ③4a+2b+c>1;④2a+b=1.其中正确的有( )个.
A.1B.2C.3D.4
4.如图,将绕点旋转得到,设点的坐标为,则点的坐标为( )
A.B.
C.D.
5.某中学有一块长30cm,宽20cm的矩形空地,该中学计划在这块空地上划出三分之二的区域种花,设计方案如图所示,求花带的宽度.设花带的宽度为xm,则可列方程为( )
A.(30﹣x)(20﹣x)=×20×30B.(30﹣2x)(20﹣x)=×20×30
C.30x+2×20x=×20×30D.(30﹣2x)(20﹣x)=×20×30
6.如图,△ABC是⊙O的内接三角形,∠A=55°,则∠OCB为( )
A.35°B.45°C.55°D.65°
7.某校数学课外小组,在坐标纸上为某湿地公园的一块空地设计植树方案如下:第k棵树种植在点Pk(xk,yk)处,其中x1=1,y1=1,且k≥2时,,[a]表示非负实数a的整数部分,例如[2.3]=2,,[1.5]=1.按此方案,第2119棵树种植点的坐标应为( )
A.(6,2121)B.(2119,5)C.(3,413)D.(414,4)
8.已知,则等于( )
A.B.C.2D.3
9.小明同学发现自己一本书的宽与长之比是黄金比约为0.1.已知这本书的长为20cm,则它的宽约为( )
A.12.36cmB.13.6cmC.32.386cmD.7.64cm
10.如图下列条件中不能判定的是( )
A.B.
C.D.
11.如图,的顶点在第一象限,顶点在轴上,反比例函数的图象经过点,若,的面积为,则的值为( )
A.B.C.D.
12.如图,在▱APBC中,∠C=40°,若⊙O与PA、PB相切于点A、B,则∠CAB=( )
A.40°B.50°C.60°D.70°
二、填空题(每题4分,共24分)
13.如图,在矩形纸片中,将沿翻折,使点落在上的点处,为折痕,连接;再将沿翻折,使点恰好落在上的点处,为折痕,连接并延长交于点,若,,则线段的长等于_____.
14.关于x的方程2x2-ax+1=0一个根是1,则它的另一个根为________.
15.如图,矩形ABCD中,AB=4,BC=6,E是边AD的中点,将△ABE折叠后得到△A′BE,延长BA′交CD于点F,则DF的长为______.
16.如图是测量河宽的示意图,AE与BC相交于点D,∠B=∠C=90°,测得BD=120m,DC=60m,EC=50m,求得河宽AB=______m.
17.如图,在中,,分别是,上的点,平分,交于点,交于点,若,且,则_______.
18.已知m,n是一元二次方程的两根,则________.
三、解答题(共78分)
19.(8分)如图,在平面直角坐标系中,△ABC的三个顶点都在格点上(每个小方格都是边长为一个单位长度的正方形).
(1)请画出△ABC关于原点对称的△A1B1C1;
(1)请画出△ABC绕点B逆时针旋转90°后的△A1B1C1.
20.(8分)如图,点E在的中线BD上,.
(1)求证:;
(2)求证:.
21.(8分)如图:已知▱ABCD,过点A的直线交BC的延长线于E,交BD、CD于F、G.
(1)若AB=3,BC=4,CE=2,求CG的长;
(2)证明:AF2=FG×FE.
22.(10分)为促进新旧功能转换,提高经济效益,某科技公司近期研发出一种新型高科技设备,每台设备成本价为25万元,经过市场调研发现,该设备的月销售量(台)和销售单价(万元)满足如图所示的一次函数关系.
(1)求月销售量与销售单价的函数关系式;
(2)根据相关规定,此设备的销售单价不得高于35万元,如果该公司想获得130万元的月利润,那么该设备的销售单价应是多少万元?
23.(10分)现有甲、乙、丙三人组成的篮球训练小组,他们三人之间进行互相传球练习,篮球从一个人手中随机传到另外一个人手中计作传球一次,共连续传球三次.
(1)若开始时篮球在甲手中,则经过第一次传球后,篮球落在丙的手中的概率是 ;
(2)若开始时篮球在甲手中,求经过连续三次传球后,篮球传到乙的手中的概率.(请用画树状图或列表等方法求解)
24.(10分)如图是一根钢管的直观图,画出它的三视图.
25.(12分)一个斜抛物体的水平运动距离为x(m),对应的高度记为h(m),且满足h=ax1+bx﹣1a(其中a≠0).已知当x=0时,h=1;当x=10时,h=1.
(1)求h关于x的函数表达式;
(1)求斜抛物体的最大高度和达到最大高度时的水平距离.
26.(12分)材料1:如图1,昌平南环大桥是经典的悬索桥,当今大跨度桥梁大多采用此种结构.此种桥梁各结构的名称如图2所示,其建造原理是在两边高大的桥塔之间,悬挂着主索,再以相应的间隔,从主索上设置竖直的吊索,与桥面垂直,并连接桥面承接桥面的重量,主索几何形态近似符合抛物线.
图1
图2
材料2:如图3,某一同类型悬索桥,两桥塔AD=BC=10 m,间距AB为32 m,桥面AB水平,主索最低点为点P,点P距离桥面为2 m;
图3
为了进行研究,甲、乙、丙三位同学分别以不同方式建立了平面直角坐标系,如下图:
甲同学:以DC中点为原点,DC所在直线为x轴,建立平面直角坐标系;
乙同学:以AB中点为原点,AB所在直线为x轴,建立平面直角坐标系;
丙同学:以点P为原点,平行于AB的直线为x轴,建立平面直角坐标系.
(1)请你选用其中一位同学建立的平面直角坐标系,写出此种情况下点C的坐标,并求出主索抛物线的表达式;
(2)距离点P水平距离为4 m和8 m处的吊索共四条需要更换,则四根吊索总长度为多少米?
参考答案
一、选择题(每题4分,共48分)
1、D
2、C
3、C
4、B
5、B
6、A
7、D
8、A
9、A
10、C
11、B
12、D
二、填空题(每题4分,共24分)
13、.
14、.
15、
16、1
17、3:1
18、-1
三、解答题(共78分)
19、(1)见解析;(1)见解析
20、(1)见解析;(2)见解析
21、(1)1;(2)证明见解析
22、(1)与的函数关系式为;(2)该设备的销售单价应是27 万元.
23、(1)经过第一次传球后,篮球落在丙的手中的概率为;(2)篮球传到乙的手中的概率为.
24、答案见解析
25、(1)h=﹣x1+10x+1;(1)斜抛物体的最大高度为17,达到最大高度时的水平距离为2.
26、(1)甲,C(16,0),主索抛物线的表达式为;(2)四根吊索的总长度为13m;
相关试卷
这是一份江苏省泰州市泰兴市黄桥初级中学2023-2024学年数学九年级第一学期期末考试模拟试题含答案,共8页。试卷主要包含了如图,在平面直角坐标系中,点P等内容,欢迎下载使用。
这是一份2023-2024学年江苏省泰州市泰兴市长生中学八年级数学第一学期期末考试模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,下列各数中最小的是,下列各数,准确数是,9的平方根是等内容,欢迎下载使用。
这是一份2023-2024学年江苏省泰州市泰兴市九年级上学期期中数学质量检测模拟试题(含答案),共12页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。