江苏省苏州市张家港市2023-2024学年数学九年级第一学期期末考试模拟试题含答案
展开
这是一份江苏省苏州市张家港市2023-2024学年数学九年级第一学期期末考试模拟试题含答案,共9页。试卷主要包含了下列命题是真命题的是等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每题4分,共48分)
1.一组数据:2,3,6,4,3,5,这组数据的中位数、众数分别是( )
A.3,3B.3,4C.3.5,3D.5,3
2.为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:
关于以上数据,说法正确的是( )
A.甲、乙的众数相同B.甲、乙的中位数相同
C.甲的平均数小于乙的平均数D.甲的方差小于乙的方差
3.如图,的顶点在第一象限,顶点在轴上,反比例函数的图象经过点,若,的面积为,则的值为( )
A.B.C.D.
4.如图是一斜坡的横截面,某人沿斜坡上的点出发,走了13米到达处,此时他在铅直方向升高了5米.则该斜坡的坡度为( )
A.B.C.D.
5.关于的方程的一个根是,则它的另一个根是( )
A.B.C.D.
6.如图所示,半径为3的⊙A经过原点O和C(0,2),B是y轴左侧⊙A优弧上的一点,则( )
A.2B.C.D.
7.一个小正方体沿着斜面前进了10 米,横截面如图所示,已知,此时小正方体上的点距离地面的高度升高了( )
A.5米B.米C.米D.米
8.下列命题是真命题的是( )
A.如果a+b=0,那么a=b=0B.的平方根是±4
C.有公共顶点的两个角是对顶角D.等腰三角形两底角相等
9.如图所示的几何体是由一些小立方块搭成的,则这个几何体的俯视图是( )
A.B.C.D.
10.如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是( )
A.8B.9C.10D.11
11.如图,是⊙的直径,弦⊥于点,,则( )
A.B.C.D.
12.已知,则锐角的取值范围是( )
A.B.C.D.
二、填空题(每题4分,共24分)
13.由一些大小相同的小正方体搭成的几何体的主视图和俯视图,如图所示,则搭成该几何体的小正方体最多是_____个.
14.阅读材料:一元二次方程的两个根是-2,3,画出二次函数的图象如图,位于轴上方的图象上点的纵坐标满足,所以不等式点的横坐标的取值范围是,则不等式解是.仿照例子,运用上面的方法解不等式的解是___________.
15.如图,已知反比例函数y=与一次函数y=x+1的图象交于点A(a,﹣1)、B(1,b),则不等式≥x+1的解集为________.
16.如图,在中若,,则__________,__________.
17.某校开展“节约每一滴水”活动,为了了解开展活动一个月以来节约用水的情况,从八年级的400名同学中选取20名同学统计了各自家庭一个月节约用水情况如表,请你估计这400名同学的家庭一个月节约用水的总量大约是_____.
18.下列四个函数:①②③④中,当x<0时,y随x的增大而增大的函数是______(选填序号).
三、解答题(共78分)
19.(8分)一只不透明的袋子中装有1个红球和1个白球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,记录颜色后放回、搅匀,这样连续共计摸3次.
(1)用树状图列出所有可能出现的结果;
(2)求3次摸到的球颜色相同的概率.
20.(8分)如图,AB是⊙O的直径,点C是⊙O上一点,AD⊥DC于D,且AC平分∠DAB.延长DC交AB的延长线于点P.
(1)求证:PC2=PA•PB;
(2)若3AC=4BC,⊙O的直径为7,求线段PC的长.
21.(8分)教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热到100℃停止加热,水温开始下降,此时水温(℃)与开机后用时()成反比例关系,直至水温降至30℃,饮水机关机,饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时接通电源,水温(℃)与时间()的关系如图所示:
(1)分别写出水温上升和下降阶段与之间的函数关系式;
(2)怡萱同学想喝高于50℃的水,请问她最多需要等待多长时间?
22.(10分)如图,是⊙的直径,是的中点,弦于点,过点作交的延长线于点.
(1)连接,求;
(2)点在上,,DF交于点.若,求的长.
23.(10分)为了提高学生对毒品危害性的认识,我市相关部门每个月都要对学生进行“禁毒知识应知应会”测评.为了激发学生的积极性,某校对达到一定成绩的学生授予“禁毒小卫士”的荣誉称号.为了确定一个适当的奖励目标,该校随机选取了七年级20名学生在5月份测评的成绩,数据如下:
收集数据:90 91 89 96 90 98 90 97 91 98 99 97 91 88 90 97 95 90 95 88
(1)根据上述数据,将下列表格补充完整.
整理、描述数据:
数据分析:样本数据的平均数、众数和中位数如下表:
得出结论:
(2)根据所给数据,如果该校想确定七年级前50%的学生为“良好”等次,你认为“良好”等次的测评成绩至少定为 分.
数据应用:
(3)根据数据分析,该校决定在七年级授予测评成绩前30%的学生“禁毒小卫士”荣誉称号,请估计评选该荣誉称号的最低分数,并说明理由.
24.(10分)如图1,▱ABCD中,∠ABC、∠ADC的平分线分别交AD、BC于点E、F.
(1)求证:四边形EBFD是平行四边形;
(2)如图2,小明在完成(1)的证明后继续进行了探索.连接AF、CE,分别交BE、FD于点G、H,得到四边形EGFH.此时,他猜想四边形EGFH是平行四边形,请在框图(图3)中补全他的证明思路,再在答题纸上写出规范的证明过程.
25.(12分)(1)计算:4sin260°+tan45°-8cs230°
(2)在Rt△ABC中,∠C=90°.若∠A=30°,b=5,求a、c.
26.(12分)某商场要经营一种新上市的文具,进价为20元,试营销阶段发现:当销售单价是25元时,每天的销售量为250件,销售单价每上涨1元,每天的销售量就减少10件
(1)写出商场销售这种文具,每天所得的销售利润(元)与销售单价(元)之间的函数关系式;
(2)求销售单价为多少元时,该文具每天的销售利润最大;
(3)商场的营销部结合上述情况,提出了A、B两种营销方案
方案A:该文具的销售单价高于进价且不超过30元;
方案B:每天销售量不少于10件,且每件文具的利润至少为25元
请比较哪种方案的最大利润更高,并说明理由
参考答案
一、选择题(每题4分,共48分)
1、C
2、D
3、B
4、A
5、C
6、C
7、B
8、D
9、D
10、A
11、A
12、B
二、填空题(每题4分,共24分)
13、1
14、
15、0〈x〈1或x〈-2
16、40° 100°
17、110m1.
18、②③
三、解答题(共78分)
19、(1)见解析;(2)
20、(1)见解析;(2)PC=1.
21、(1)与的函数关系式为: ,与的函数关系式每分钟重复出现一次;(2)她最多需要等待分钟;
22、(1);(2).
23、(1)5;3;90;(2)91;(3)估计评选该荣誉称号的最低分数为97分.理由见解析.
24、(1)证明见解析;(2)证明见解析
25、(1)2 ;(2)a=5,c=1
26、 (1) w=-10x2+700x-10000;(2) 即销售单价为35元时,该文具每天的销售利润最大;
(3) A方案利润更高.
甲
2
6
7
7
8
乙
2
3
4
8
8
节水量/m3
0.2
0.25
0.3
0.4
0.5
家庭数/个
2
4
6
7
1
成绩/分
88
89
90
91
95
96
97
98
99
学生人数
2
1
3
2
1
2
1
平均数
众数
中位数
93
91
相关试卷
这是一份江苏省苏州市张家港市2023-2024学年 七年级上学期期末数学模拟试卷,共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份江苏省苏州市胥江实验中学2023-2024学年数学九年级第一学期期末考试模拟试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,在中,,,若,则的长为等内容,欢迎下载使用。
这是一份2023-2024学年江苏省苏州市张家港市梁丰高级中学数学九上期末考试试题含答案,共7页。试卷主要包含了下列事件中,属于必然事件的是,如图所示的工件的主视图是等内容,欢迎下载使用。