河北省沧州青县联考2023-2024学年九上数学期末质量检测试题含答案
展开
这是一份河北省沧州青县联考2023-2024学年九上数学期末质量检测试题含答案,共8页。试卷主要包含了下列各组图形中,一定相似的是,方程的解是等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每题4分,共48分)
1.从口袋中随机摸出一球,再放回口袋中,不断重复上述过程,共摸了150次,其中有50次摸到黑球,已知口袋中有黑球10个和若干个白球,由此估计口袋中大约有多少个白球( )
A.10个B.20个C.30个D.无法确定
2.如图,点A是以BC为直径的半圆的中点,连接AB,点D是直径BC上一点,连接AD,分别过点B、点C向AD作垂线,垂足为E和F,其中,EF=2,CF=6,BE=8,则AB的长是( )
A.4B.6C.8D.10
3.下列各组图形中,一定相似的是( )
A.任意两个圆
B.任意两个等腰三角形
C.任意两个菱形
D.任意两个矩形
4.点C为线段AB的黄金分割点,且AC>BC,下列说法正确的有( )
①AC=AB,②AC=AB,③AB:AC=AC:BC,④AC≈0.618AB
A.1个B.2个C.3个D.4个
5.如图,如果从半径为9cm的圆形纸片剪去圆周的一个扇形,将留下的扇形围成
一个圆锥(接缝处不重叠),那么这个圆锥的高为
A.6cmB.cmC.8cmD.cm
6.把抛物线先向左平移个单位,再向下平移个单位,得到的抛物线的表达式是( )
A.B.
C.D.
7.方程的解是( )
A.0B.3C.0或–3D.0或3
8.一列快车从甲地驶往乙地,一列特快车从乙地驶往甲地,快车的速度为100千米/小时,特快车的速度为150千米/小时,甲乙两地之间的距离为1000千米,两车同时出发,则图中折线大致表示两车之间的距离(千米)与快车行驶时间t(小时)之间的函数图象是
A.B.
C.D.
9.经过某十字路口的汽车,可能直行,也可能向左转或向右转,如果这三种可能性大小相同,则两辆汽车经过这个十字路口时,一辆向右转,一辆向左转的概率是( )
A.B.C.D.
10.已知反比例函数y=的图象经过点(3,2),那么下列四个点中,也在这个函数图象上的是( )
A.(3,-2)B.(-2,-3)C.(1,-6)D.(-6,1)
11.下面空心圆柱形物体的左视图是( )
A.B.C.D.
12.已知抛物线具有如下性质:抛物线上任意一点到定点的距离与到轴的距离相等.如图点的坐标为 , 是抛物线上一动点,则周长的最小值是( )
A.B.C.D.
二、填空题(每题4分,共24分)
13.如图,将正方形绕点逆时针旋转至正方形,边交于点,若正方形的边长为,则的长为________.
14.一艘轮船在小岛A的北偏东60°方向距小岛80海里的B处,沿正西方向航行3小时后到达小岛的北偏西45°的C处,则该船行驶的速度为____________海里/时.
15.在数、、中任取两个数(不重复)作为点的坐标,则该点刚好在一次函数图象的概率是________________.
16.已知圆锥的底面圆的半径是,母线长是,则圆锥的侧面积是________.
17.若代数式4x2-2x-5与2x2+1的值互为相反数,则x的值是____.
18.直角三角形三角形两直角边长为3和4,三角形内一点到各边距离相等,那么这个距离为________.
三、解答题(共78分)
19.(8分)如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线.交BC于点E.
(1)求证:BE=EC
(2)填空:①若∠B=30°,AC=2,则DE=______;
②当∠B=______度时,以O,D,E,C为顶点的四边形是正方形.
20.(8分)如图,小明在一块平地上测山高,先在B处测得山顶A的仰角为30°,然后向山脚直行60米到达C处,再测得山顶A的仰角为45°,求山高AD的长度.(测角仪高度忽略不计)
21.(8分)如图,已知矩形 ABCD.在线段 AD 上作一点 P,使∠DPC =∠BPC .(要求:用尺规作图,保留作图痕迹,不写作法和证明)
22.(10分)如图,抛物线y=ax2+x+c(a≠0)与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知点A的坐标为(﹣1,0),点C的坐标为(0,2).
(1)求抛物线的解析式;
(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;
(3)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.
23.(10分)为提升学生的艺术素养,某校计划开设四门选修课程:声乐、舞蹈、书法、摄影.要求每名学生必须选修且只能选修一门课程,为保证计划的有效实施,学校随机对部分学生进行了一次调查,并将调查结果绘制成如下不完整的统计表和统计图.
学生选修课程统计表
根据以上信息,解答下列问题:
(1) , .
(2)求出的值并补全条形统计图.
(3)该校有1500名学生,请你估计选修“声乐”课程的学生有多少名.
(4)七(1)班和七(2)班各有2人选修“舞蹈”课程且有舞蹈基础,学校准备从这4人中随机抽取2人编排“舞蹈”在开班仪式上表演,请用列表法或画树状图的方法求所抽取的2人恰好来自同一个班级的概率.
24.(10分)如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,求抛物线经过A(1,0),C(0,3)两点,与x轴交于A、B两点.
(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;
(2)在该抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;
(3)设点P为该抛物线的对称轴x=﹣1上的一个动点,直接写出使△BPC为直角三角形的点P的坐标.
(提示:若平面直角坐标系内有两点P(x1,y1)、Q(x2,y2),则线段PQ的长度PQ=).
25.(12分)如图,把一个木制正方体的表面涂上颜色,然后将正方体分割成64个大小相同的小正方体.从这些小正方体中任意取出一个,求取出的小正方体:
(1)三面涂有颜色的概率;
(2)两面涂有颜色的概率;
(3)各个面都没有颜色的概率.
26.(12分)在一个三角形中,如果有一边上的中线等于这条边的一半,那么就称这个三角形为“智慧三角形”.
(1)如图1,已知、是⊙上两点,请在圆上画出满足条件的点,使为“智慧三角形”,并说明理由;
(2)如图2,是等边三角形,,以点为圆心,的半径为1画圆,为边上的一动点,过点作的一条切线,切点为,求的最小值;
(3)如图3,在平面直角坐标系中,⊙的半径为1,点是直线上的一点,若在⊙上存在一点,使得为“智慧三角形”,当其面积取得最小值时,求出此时点的坐标.
参考答案
一、选择题(每题4分,共48分)
1、B
2、D
3、A
4、C
5、B
6、B
7、D
8、C
9、B
10、B
11、A
12、C
二、填空题(每题4分,共24分)
13、
14、
15、
16、
17、1或-
18、1
三、解答题(共78分)
19、(1)见解析;(2)①3;②1.
20、30米
21、详见解析
22、(1)y=﹣x2+x+2(2)(,4)或(,)或(,﹣)(3)(2,1)
23、(1)50、28;(2),补全图形见解析;(3)估计选修“声乐”课程的学生有420人;(4)所抽取的2人恰好来自同一个班级的概率为.
24、(1)y=x+3;y=﹣x2﹣2x+3;(2)M的坐标是(﹣1,2);(3)P的坐标是(﹣1,)或(﹣1,)或(﹣1,4)或(﹣1,﹣2).
25、(1);(2);(3)
26、(1)见解析;(2);(1)或
课程
人数
所占百分比
声乐
14
舞蹈
8
书法
16
摄影
合计
相关试卷
这是一份河北省沧州市青县2023-2024学年九年级上学期期末数学试题(含答案),共24页。试卷主要包含了单选题,解答题等内容,欢迎下载使用。
这是一份河北省沧州沧县联考2023-2024学年九年级数学第一学期期末质量检测试题含答案,共10页。试卷主要包含了 “泱泱华夏,浩浩千秋,如图, 在同一坐标系中等内容,欢迎下载使用。
这是一份河北省沧州青县联考2023-2024学年数学九上期末检测模拟试题含答案,共7页。试卷主要包含了函数y=2-2的最小值是,若3a=5b,则a,关于抛物线的说法中,正确的是等内容,欢迎下载使用。