河北省廊坊市文安县2023-2024学年数学九年级第一学期期末经典模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每题4分,共48分)
1.二次函数y=x2﹣6x图象的顶点坐标为( )
A.(3,0)B.(﹣3,﹣9)C.(3,﹣9)D.(0,﹣6)
2.下列说法正确的是( )
A.一颗质地均匀的骰子已连续抛掷了2000次,其中抛掷出5点的次数最少,则第2001次一定抛掷出5点
B.抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等
C.明天降雨的概率是80%,表示明天有80%的时间降雨
D.某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖
3.一元二次方程3x2=8x化成一般形式后,其中二次项系数和一次项系数分别是( )
A.3,8B.3,0C.3,-8D.-3,-8
4.如图,一个可以自由转动的转盘,被分成了6个相同的扇形,转动转盘,转盘停止时,指针落在白色区域的概率等于( )
A.B.C.D.无法确定
5.如图直线y=mx与双曲线y=交于点A、B,过A作AM⊥x轴于M点,连接BM,若S△AMB=2,则k的值是( )
A.1B.2C.3D.4
6.如图,正方形网格中,每个小正方形的边长均为1个单位长度. ,在格点上,现将线段向下平移个单位长度,再向左平移个单位长度,得到线段,连接,.若四边形是正方形,则的值是( )
A.3B.4C.5D.6
7.已知点A(﹣3,y1),B(﹣2,y2),C(3,y3)都在反比例函数y=(k<0)的图象上,则( )
A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y2<y1<y3
8.如图,水平地面上有一面积为30cm2的灰色扇形OAB,其中OA=6cm,且OA垂直于地面.将这个扇形向右滚动(无滑动)至点B刚好接触地面为止,则在这个滚动过程中,点O移动的距离是( )
A.cmB.cmC.cmD.30cm
9.关于的一元二次方程,则的条件是( )
A.B.C.D.
10.一个袋子中装有6个黑球3个白球,这些球除颜色外,形状、大小、质地等完全相同,在看不到球的条件下,随机地从这个袋子中摸出一个球,摸到白球的概率为( )
A.B.C.D.
11.已知一元二次方程,则该方程根的情况是( )
A.有两个不相等的实数根B.有两个相等的实数根
C.两个根都是自然数D.无实数根
12.从这九个自然数中任取一个,是的倍数的概率是( ).
A.B.C.D.
二、填空题(每题4分,共24分)
13.一学校为了绿化校园环境,向某园林公司购买了一批树苗,园林公司规定:如果购买树苗不超过60棵,每棵售价为120元;如果购买树苗超过60棵,在一定范围内,每增加1棵,所出售的这批树苗每棵售价降低0.5元,若该校最终向园林公司支付树苗款8800元,设该校共购买了棵树苗,则可列出方程__________.
14.如图,△ABC中,AB=AC=5,BC=6,AD⊥BC,E、F分别为AC、AD上两动点,连接CF、EF,则CF+EF的最小值为_____.
15.如图,BA是⊙C的切线,A为切点,AC=1,AB=2,点D是⊙C上的一个动点,连结BD并延长,交AC的延长线于E,则EC的最大值为_______.
16.在一个不透明的袋中有2个红球,若干个白球,它们除颜色外其它都相同,若随机从袋中摸出一个球,摸到红球的概率是,则袋中有白球_________个.
17.已知点A(4,y1),B(,y2),C(-2,y3)都在二次函数y=(x-2)2-1的图象上,则y1,y2,y3的大小关系是 .
18.如图,△ABC内接于圆,点D在弧BC上,记∠BAC-∠BCD=α,则图中等于α的角是_______
三、解答题(共78分)
19.(8分)国内猪肉价格不断上涨,已知今年10月的猪肉价格比今年年初上涨了80%,李奶奶10月在某超市购买1千克猪肉花了72元钱.
(1)今年年初猪肉的价格为每千克多少元?
(2)某超市将进货价为每千克55元的猪肉按10月价格出售,平均一天能销售出100千克,随着国家对猪肉价格的调控,超市发现猪肉的售价每千克下降1元,其日销售量就增加10千克,超市为了实现销售猪肉每天有1800元的利润,并且尽可能让顾客得到实惠,猪肉的售价应该下降多少元?
20.(8分)解方程:
(1);
(2)
21.(8分)如图,抛物线y=ax2+bx+c经过A(1,0)、B(4,0)、C(0,3)三点.
(1)求该抛物线的解析式;
(2)如图,在抛物线的对称轴上是否存在点P,使得四边形PAOC的周长最小?若存在,求出四边形PAOC周长的最小值;若不存在,请说明理由.
(3)在(2)的条件下,点Q是线段OB上一动点,当△BPQ与△BAC相似时,求点Q的坐标.
22.(10分)如图,为外接圆的直径,点是线段延长线上一点,点在圆上且满足,连接,,,交于点.
(1)求证:.
(2)过点作,垂足为,,,求证:.
23.(10分)某商店如果将进货价为8元的商品按每件11元售出,每天可销售211件.现在采取提高售价,减少售货量的方法增加利润,已知这种商品每涨价1.5元,其销量减少11件.
(1)若涨价x元,则每天的销量为____________件(用含x的代数式表示);
(2)要使每天获得711元的利润,请你帮忙确定售价.
24.(10分)如图,在△ABC中,DE∥BC,,M为BC上一点,AM交DE于N.
(1)若AE=4,求EC的长;
(2)若M为BC的中点,S△ABC=36,求S△ADN的值.
25.(12分)甲、乙两名队员参加射击训练,每人射击10次,成绩分别如下:
根据以上信息,整理分析数据如下:
(1)a=_____;b=_____;c=_____;
(2)填空:(填“甲”或“乙”).
①从平均数和中位数的角度来比较,成绩较好的是_____;
②从平均数和众数的角度来比较,成绩较好的是_____;
③成绩相对较稳定的是_____.
26.(12分)某篮球队对队员进行定点投篮测试,每人每天投篮10次,现对甲、乙两名队员在五天中进球数(单位:个)进行统计,结果如下:
经过计算,甲进球的平均数为8,方差为3.2.
(1)求乙进球的平均数和方差;
(2)如果综合考虑平均成绩和成绩稳定性两方面的因素,从甲、乙两名队员中选出一人去参加定点投篮比赛,应选谁?为什么?
参考答案
一、选择题(每题4分,共48分)
1、C
2、B
3、C
4、C
5、B
6、A
7、C
8、A
9、C
10、B
11、A
12、B
二、填空题(每题4分,共24分)
13、
14、
15、
16、6
17、y3>y1>y2.
18、∠DAC
三、解答题(共78分)
19、(1)每千克40元(2)猪肉的售价应该下降5元
20、(1),;(2),.
21、(1) ;(2)存在点P,使得四边形PAOC的周长最小,四边形PAOC周长的最小值为9;(3)Q的坐标或.
22、(1)见解析;(2)见解析.
23、(1)211-21x;(2)12元.
24、(1)2(2)8
25、(1)7,7.5,4.2;(2)①乙,②乙;③甲
26、(1)乙平均数为8,方差为0.8;(2)乙.
平均成绩/环
中位数/环
众数/环
方差
甲
a
7
7
1.2
乙
7
b
8
c
甲
10
6
10
6
8
乙
7
9
7
8
9
河北省廊坊市文安县2023-2024学年数学九年级第一学期期末达标检测试题含答案: 这是一份河北省廊坊市文安县2023-2024学年数学九年级第一学期期末达标检测试题含答案,共7页。试卷主要包含了2019的相反数是,若∽,,,,则的长为等内容,欢迎下载使用。
河北省廊坊市文安县2022-2023学年八年级上学期期末模拟测试数学试卷(含解析): 这是一份河北省廊坊市文安县2022-2023学年八年级上学期期末模拟测试数学试卷(含解析),共21页。试卷主要包含了选择题等内容,欢迎下载使用。
河北省廊坊市文安县2023-2024学年八上数学期末学业质量监测试题含答案: 这是一份河北省廊坊市文安县2023-2024学年八上数学期末学业质量监测试题含答案,共8页。