浙江省宁波市江北中学2023-2024学年数学九上期末调研模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每题4分,共48分)
1.下列说法正确的是( )
A.了解飞行员视力的达标率应使用抽样调查
B.一组数据3,6,6,7,8,9的中位数是6
C.从2000名学生中选出200名学生进行抽样调查,样本容量为2000
D.一组数据1,2,3,4,5的方差是2
2.已知反比例函数y=的图象经过点P(﹣2,3),则下列各点也在这个函数图象的是( )
A.(﹣1,﹣6)B.(1,6)C.(3,﹣2)D.(3,2)
3.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条边DF=50cm,EF=30cm,测得边DF离地面的高度AC=1.5m,CD=20m,则树高AB为( )
A.12mB.13.5mC.15mD.16.5m
4.如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,则图中相似三角形共有( )
A.1对B.2对C.3对D.4对
5.关于x的一元二次方程(2x-1)2+n2+1=0的根的情况是( )
A.有两个不相等的实数根B.有两个相等的实数根
C.没有实数根D.无法判定
6.如图,一条抛物线与x轴相交于A、B两点(点A在点B的左侧),其顶点P在线段MN上移动.若点M、N的坐标分别为(-1,-1)、(2,-1),点B的横坐标的最大值为3,则点A的横坐标的最小值为( )
A.-3B.-2.5C.-2D.-1.5
7.如图,在中,两个顶点在轴的上方,点的坐标是.以点为位似中心,在轴的下方作的位似,图形,使得的边长是的边长的2倍.设点的横坐标是-3,则点的横坐标是( )
A.2B.3C.4D.5
8.如图,△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A旋转到△AED的位置,使得DC∥AB,则∠BAE等于( )
A.30°B.40°C.50°D.60°
9.如图,点B,C,D在⊙O上,若∠BCD=30°,则∠BOD的度数是( )
A.75°B.70°C.65°D.60°
10.在平面直角坐标系中,将横纵坐标之积为1的点称为“好点”,则函数的图象上的“好点”共有( )
A.1个B.2个C.3个D.4个
11.从1,2,3,4四个数中任取一个数作为十位上的数字,再从2,3,4三个数中任取一个数作为个位上的数字,那么组成的两位数是3的倍数的概率是( )
A.B.C.D.
12.如图,是的直径,是弦,点是劣弧(含端点)上任意一点,若,则的长不可能是( )
A.4B.5C.12D.13
二、填空题(每题4分,共24分)
13.已知,则的值是_____.
14.在实数范围内分解因式:-1+9a4=____________________。
15.已知正比例函数的图像与反比例函数的图像有一个交点的坐标是,则它们的另一个交点坐标为_________ .
16.已知抛物线经过和两点,则的值为__________.
17.抛物线在对称轴_____(填“左侧”或“右侧”)的部分是下降的.
18.抛物线y=(x﹣1)2+3的对称轴是直线_____.
三、解答题(共78分)
19.(8分)如图,已如平行四边形OABC中,点O为坐标顶点,点A(3,0),B(4,2),函数(k≠0)的图象经过点C.
(1)求反比例的函数表达式:
(2)请判断平行四边形OABC对角线的交点是否在函数(k≠0)的图象上.
20.(8分)如图,在直角△ABC中,∠C=90°,AB=5,作∠ABC的平分线交AC于点D,在AB上取点O,以点O为圆心经过B、D两点画圆分别与AB、BC相交于点E、F(异于点B).
(1)求证:AC是⊙O的切线;
(2)若点E恰好是AO的中点,求的长;
(3)若CF的长为,①求⊙O的半径长;②点F关于BD轴对称后得到点F′,求△BFF′与△DEF′的面积之比.
21.(8分)如图,在中,,,,动点从点出发,沿方向匀速运动,速度为;同时,动点从点出发,沿方向匀速运动,速度为;当一个点停止运动,另一个点也停止运动.设点,运动的时间是.过点作于点,连接,.
(1)为何值时,?
(2)设四边形的面积为,试求出与之间的关系式;
(3)是否存在某一时刻,使得若存在,求出的值;若不存在,请说明理由;
(4)当为何值时,?
22.(10分)已知关于x的一元二次方程x2-2x+m=0有两个不相等的实数根.
(1)求实数m的最大整数值;
(2)在(1)的条件下,方程的实数根是、,求代数式的值.
23.(10分)如图,已知二次函数G1:y=ax2+bx+c(a≠0)的图象过点(﹣1,0)和(0,3),对称轴为直线x=1.
(1)求二次函数G1的解析式;
(2)当﹣1<x<2时,求函数G1中y的取值范围;
(3)将G1先向右平移3个单位,再向下平移2个单位,得到新二次函数G2,则函数G2的解析式是 .
(4)当直线y=n与G1、G2的图象共有4个公共点时,直接写出n的取值范围.
24.(10分)如图,在正方形中,点是的中点,连接,过点作交于点,交于点.
(1)证明:;
(2)连接,证明:.
25.(12分)解方程:(配方法)
26.(12分)利用一面墙(墙的长度为20m),另三边用长58m的篱笆围成一个面积为200m2的矩形场地.求矩形场地的各边长?
参考答案
一、选择题(每题4分,共48分)
1、D
2、C
3、D
4、C
5、C
6、C
7、B
8、C
9、D
10、C
11、B
12、A
二、填空题(每题4分,共24分)
13、
14、
15、 (-1,-2)
16、
17、右侧
18、x=1
三、解答题(共78分)
19、(1)y=;(2)平行四边形OABC对角线的交点在函数y=的图象上,见解析
20、(1)见解析;(2);(3)①r1=1,;②△BFF'与△DEF'的面积比为或
21、(1)当t=时,DE⊥AC;(2) ;(3)当t=时, ;(4)t=时,=
22、(1)1;(2)1.
23、(1)二次函数G1的解析式为y=﹣x2+2x+3;(2)0<y≤4;(3)y=﹣(x﹣4)2+2;(4)n的取值范围为<n<2或n<.
24、(1)见解析;(2)见解析.
25、,
26、矩形长为25m,宽为8m
浙江省宁波市四校2023-2024学年九上数学期末经典模拟试题含答案: 这是一份浙江省宁波市四校2023-2024学年九上数学期末经典模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,在中,,,,则直角边的长是等内容,欢迎下载使用。
浙江省宁波市东方中学2023-2024学年九上数学期末教学质量检测模拟试题含答案: 这是一份浙江省宁波市东方中学2023-2024学年九上数学期末教学质量检测模拟试题含答案,共7页。
2023-2024学年江北新区联盟九上数学期末经典模拟试题含答案: 这是一份2023-2024学年江北新区联盟九上数学期末经典模拟试题含答案,共9页。试卷主要包含了在下列函数图象上任取不同两点P,将两个圆形纸片等内容,欢迎下载使用。