浙江省2023-2024学年数学九年级第一学期期末学业质量监测模拟试题含答案
展开
这是一份浙江省2023-2024学年数学九年级第一学期期末学业质量监测模拟试题含答案,共9页。试卷主要包含了考生要认真填写考场号和座位序号,下列说法正确的是等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每题4分,共48分)
1.如图,中,,,.将沿图示中的虚线剪开,按下面四种方式剪下的阴影三角形与原三角形相似的是( )
A.①②③B.②③④C.①②D.④
2.下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容.
如图,已知与相切于点,点在上.求证:.
证明:连接并延长,交于点,连接.
∵与相切于点,
∴,
∴.
∵@是的直径,
∴(直径所对的圆周角是90°),
∴,
∴◎.
∵,
∴▲(同弧所对的※相等),
∴.
下列选项中,回答正确的是( )
A.@代表B.◎代表C.▲代表D.※代表圆心角
3.如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE=AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是( )
A.①②B.②③C.①③D.①④
4.反比例函数的图象如图所示,以下结论:
① 常数m <-1;
② 在每个象限内,y随x的增大而增大;
③ 若A(-1,h),B(2,k)在图象上,则h<k;
④ 若P(x,y)在图象上,则P′(-x,-y)也在图象上.
其中正确的是
A.①②B.②③C.③④D.①④
5.如图,四边形ABCD中,∠A=90°,AB=12,AD=5,点M、N分别为线段BC、AB上的动点(含端点,但点M不与点B重合),点E、F分别为DM、MN的中点,则EF长度的可能为( )
A.2B.5C.7D.9
6.如图为二次函数的图象,在下列说法中:①;②方程的根是,;③④当时,随的增大而减小.不正确的说法有( )
A.①B.①②C.①③D.②④
7.如图,△ABC是⊙O的内接三角形,∠AOB=110°,则∠ACB的度数为( )
A.35°B.55°C.60°D.70°
8.下列说法正确的是( )
A.购买江苏省体育彩票有“中奖”与“不中奖”两种情况,所以中奖的概率是
B.国家级射击运动员射靶一次,正中靶心是必然事件
C.如果在若干次试验中一个事件发生的频率是,那么这个事件发生的概率一定也是
D.如果车间生产的零件不合格的概率为 ,那么平均每检查1000个零件会查到1个次品
9.将抛物线向上平移个单位长度,再向右平移个单位长度,得到的抛物线为( )
A.B.
C.D.
10.用配方法解方程-4x+3=0,下列配方正确的是( )
A.=1B.=1C.=7D.=4
11.如图,抛物线的对称轴为,且过点,有下列结论:①>0;②>0;③;④>0.其中正确的结论是( )
A.①③B.①④C.①②D.②④
12.如图,有一块直角三角形余料ABC,∠BAC=90°,D是AC的中点,现从中切出一条矩形纸条DEFG,其中E,F在BC上,点G在AB上,若BF=4.5cm,CE=2cm,则纸条GD的长为( )
A.3 cmB.cmC.cmD.cm
二、填空题(每题4分,共24分)
13.如果方程x2-4x+3=0的两个根分别是Rt△ABC的两条边,△ABC最小的角为A,那么tanA的值为_______.
14.如图,铁道口的栏杆短臂长1m,长臂长16m.当短臂端点下降0.5m时,长臂端点升高______
15.一个不透明的口袋中装有5个红球和若干个白球,他们除颜色外其他完全相同,通过多次摸球实验后发现,摸到红球的频率稳定在25%附近,估计口袋中白球有__________个.
16.在中,若,则是_____三角形.
17.一个不透明的袋子中装有黑、白小球各两个,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是白球的概率为_______.
18.如图,在中,,,将绕顶点顺时针旋转,得到,点、分别与点、对应,边分别交边、于点、,如果点是边的中点,那么______.
三、解答题(共78分)
19.(8分)如图1,抛物线y=﹣x2+mx+n交x轴于点A(﹣2,0)和点B,交y轴于点C(0,2).
(1)求抛物线的函数表达式;
(2)若点M在抛物线上,且S△AOM=2S△BOC,求点M的坐标;
(3)如图2,设点N是线段AC上的一动点,作DN⊥x轴,交抛物线于点D,求线段DN长度的最大值.
20.(8分)某校体育组为了解全校学生“最喜欢的一项球类项目”,随机抽取了部分学生进行调查,下面是根据调查结果绘制的不完整的统计图.请你根据统计图回答下列问题:
(1)请补全条形统计图(图2);
(2)在扇形统计图中,“篮球”部分所对应的圆心角是____________度?
(3)篮球教练在制定训练计划前,将从最喜欢篮球项目的甲、乙、丙、丁四名同学中任选两人进行个别座谈,请用列表法或树状图法求抽取的两人恰好是甲和乙的概率.
21.(8分)如图所示,某学校有一边长为20米的正方形区域(四周阴影是四个全等的矩形,记为区域甲;中心区是正方形,记为区域乙).区域甲建设成休闲区,区域乙建成展示区,已知甲、乙两个区域的建设费用如下表:
设矩形的较短边的长为米,正方形区域建设总费用为百元.
(1)的长为 米(用含的代数式表示);
(2)求关于的函数解析式;
(3)当中心区的边长要求不低于8米且不超过12米时,预备建设资金220000元够用吗?请利用函数的增减性来说明理由.
22.(10分)先化简,再求值:,期中.
23.(10分)如图,在△ABC中,AB=AC,以AB为直径作⊙O交BC于点D,过点D作AC的垂线交AC于点E,交AB的延长线于点F.
(1)求证:DE与⊙O相切;
(2)若CD=BF,AE=3,求DF的长.
24.(10分)在平面直角坐标系中,四边形是矩形,点,点,点.以点为中心,顺时针旋转矩形,得到矩形,点的对应点分别为,记旋转角为.
(1)如图①,当时,求点的坐标;
(2)如图②,当点落在的延长线上时,求点的坐标;
(3)当点落在线段上时,求点的坐标(直接写出结果即可).
25.(12分)(1)解方程:x2﹣4x﹣3=0
(2)计算:
26.(12分)某商场经销种高档水果 ,原价每千克元,连续两次降价后每千克元,若每次下降的百分率相同求每次下降的百分率
参考答案
一、选择题(每题4分,共48分)
1、A
2、B
3、D
4、C
5、B
6、A
7、B
8、C
9、B
10、A
11、C
12、C
二、填空题(每题4分,共24分)
13、或
14、8m
15、15
16、等腰
17、
18、
三、解答题(共78分)
19、(2)y=﹣x2﹣x+2; (2)(0,2)或(﹣2,2)或(,﹣2)或(,﹣2);(3)2.
20、(1)见解析;(2)144;(3)
21、(1);(2)y=;(3)预备建设资金220000元不够用,见解析
22、,1
23、(1)见解析;(2)DF=2.
24、(1)点的坐标为;(2)点的坐标为;(3)点的坐标为.
25、(1)x1=2+,x2=2﹣;(2)1
26、每次下降的百分率为20%
区域
甲
乙
价格(百元米2)
6
5
相关试卷
这是一份湖北荆门2023-2024学年九年级数学第一学期期末学业质量监测模拟试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,下列说法中正确的是,对于二次函数y=2等内容,欢迎下载使用。
这是一份浙江省绍兴市海亮2023-2024学年数学九年级第一学期期末学业质量监测模拟试题含答案,共9页。试卷主要包含了关于抛物线,下列结论中正确的是等内容,欢迎下载使用。
这是一份浙江省宁波市鄞州实验中学2023-2024学年数学九年级第一学期期末学业质量监测模拟试题含答案,共7页。试卷主要包含了定义,点关于原点的对称点是等内容,欢迎下载使用。