浙江省丽水市名校2023-2024学年九年级数学第一学期期末联考模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每题4分,共48分)
1.如图所示,某同学拿着一把有刻度的尺子,站在距电线杆30m的位置,把手臂向前伸直,将尺子竖直,看到尺子遮住电线杆时尺子的刻度为12cm,已知臂长60cm,则电线杆的高度为( )
A.2.4mB.24mC.0.6mD.6m
2.已知二次函数y=﹣x2+x+6及一次函数y=﹣x+m,将该二次函数在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新函数(如图所示),请你在图中画出这个新图象,当直线y=﹣x+m与新图象有4个交点时,m的取值范围是( )
A.﹣<m<3B.﹣<m<2C.﹣2<m<3D.﹣6<m<﹣2
3.如图,将绕点逆时针旋转得到,则下列说法中,不正确的是( )
A.B.C.D.
4.如图,已知一组平行线a∥b∥c,被直线m、n所截,交点分别为A、B、C和D、E、F,且AB=1.5,BC=2,DE=1.8,则EF=( )
A.4.4B.4C.3.4D.2.4
5.关于抛物线y=-3(x+1)2﹣2,下列说法正确的是( )
A.开口方向向上B.顶点坐标是(1,2)
C.当x<-1时,y随x的增大而增大D.对称轴是直线x=1
6.下列图形是我国国产品牌汽车的标识,这些汽车标识中,是中心对称图形的是( )
A.B.
C.D.
7.在中,,,下列结论中,正确的是( )
A.B.
C.D.
8.在中,,点,分别是边,的中点,点在内,连接,,.以下图形符合上述描述的是( )
A.B.
C.D.
9.如图是抛物线的部分图象,其顶点为,与轴交于点,与轴的一个交点为,连接.以下结论:①;②抛物线经过点;③;④当时, .其中正确的是( )
A.①③B.②③C.①④D.②④
10.如图,中,点、分别在、上,,,则与四边形的面积的比为( )
A.B.C.D.
11.已知,则代数式的值为( )
A.B.C.D.
12.若方程x2+3x+c=0没有实数根,则c的取值范围是( )
A.c<B.c<C.c>D.c>
二、填空题(每题4分,共24分)
13.若正六边形外接圆的半径为4,则它的边长为_____.
14.中山市田心森林公园位于五桂山主峰脚下,占地3400多亩,约合2289000 平方米,用科学记数法表示 2289000为__________.
15.将一些相同的圆点按如图所示的规律摆放:第1个图形有3个圆点,第2个形有7个圆点,第3个图形有13个圆点,第4个图形有21个圆点,则第20个图形有_____个圆点.
16.如图,在平面直角坐标系中,将绕点顺时针旋转到的位置,点,分别落在点,处,点在轴上,再将绕点顺时针旋转到的位置,点在轴上,再将绕点顺时针旋转到的位置,点在轴上,依次进行下去,……,若点,,则点B2016的坐标为______.
17.现有6张正面分别标有数字的不透明卡片,这些卡片除数字不同外其余全部相同现将它们背面朝上,洗均匀后从中任取一张,将该卡片上的数字记为,则使得关于的一元二次方程有实数根的概率为____.
18.如图,在平面直角坐标系中,已知点,为平面内的动点,且满足,为直线上的动点,则线段长的最小值为________.
三、解答题(共78分)
19.(8分)如图,,DB平分∠ADC,过点B作交AD于M.连接CM交DB于N.
(1)求证:;(2)若,求MN的长.
20.(8分)已知关于x的方程ax2+(3﹣2a)x+a﹣3=1.
(1)求证:无论a为何实数,方程总有实数根.
(2)如果方程有两个实数根x1,x2,当|x1﹣x2|=时,求出a的值.
21.(8分) “一带一路”为我们打开了交流、合作的大门,也为沿线各国在商贸等领域提供了更多的便捷,2018年11月5日至10日,首届中国国际进口博览会在国家会展中心(上海)举办,据哈外贸商会发布消息,博览会期间,哈Paseka公司与重庆某国际贸易公司签订了供应蜂蜜合同:哈Paseka公司于2019年6月前分期分批向重庆某国际贸易公司供给优质蜂蜜共3000万件,该公司顺应新时代购物流,打算分线上和线下两种方式销售.
(1)若计划线上销售量不低于线下销售量的25%,求该公司计划在线下销售量最多为多少万件?
(2)该公司在12月上旬销售优质蜂蜜共240万件,且线上线下销售单件均为100元/件.12月中旬决定线上销售单价下调m%,线下销售单价不变,在这种情况下,12月中旬销售总量比上旬增加了m%,且中旬线上销售量占中旬总销量的,结果中旬销售总金额比上旬销售总金额提高了m%.求m的值.
22.(10分)如图,等腰Rt△BPQ的顶点P在正方形ABCD的对角线AC上(P与AC不重合),∠PBQ=90°,QP与BC交于E,QP延长线交AD于F,连CQ.
(1)①求证:AP=CQ ;
②求证:
(2)当时,求的值.
23.(10分)解方程
(1)x2﹣4x+2=0
(2)(x﹣3)2=2x﹣6
24.(10分)如图,点A(1,m2)、点B(2,m﹣1)是函数y=(其中x>0)图象上的两点.
(1)求点A、点B的坐标及函数的解析式;
(2)连接OA、OB、AB,求△AOB的面积.
25.(12分)从三角形(不是等腰三角形)一个顶点引出一条射线 与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.
如图1,在中,是的完美分割线,且, 则的度数是
如图2,在中,为角平分线,,求证: 为的完美分割线.
如图2,中,是的完美分割线,且是以为底边的等腰三角形,求完美分割线的长.
26.(12分)某校一课外活动小组为了了解学生最喜欢的球类运动况,随机抽查了本校九年级的200名学生,调查的结果如图所示,请根据该扇形统计图解答以下问题:
(1)图中的值是________;
(2)被查的200名生中最喜欢球运动的学生有________人;
(3)若由3名最喜欢篮球运动的学生(记为),1名最喜欢乒乓球运动的学生(记为),1名最喜欢足球运动的学生(记为)组队外出参加一次联谊活动.欲从中选出2人担任组长(不分正副),列出所有可能情况,并求2人均是最喜欢篮球运动的学生的概率.
参考答案
一、选择题(每题4分,共48分)
1、D
2、D
3、A
4、D
5、C
6、D
7、C
8、C
9、D
10、C
11、B
12、D
二、填空题(每题4分,共24分)
13、1
14、
15、1
16、(6048,2)
17、
18、
三、解答题(共78分)
19、(1)见解析;(2).
20、(1)见解析;(2)﹣2或2
21、(1)2400万件;(2)1
22、(1)①证明见解析;②证明见解析;(2)
23、(1)x=2;(2)x=3或x=1.
24、(1)A(1,2),B(2,1),函数的解析式为y=;(2)
25、(1)88°;(2)详见解析;(3)
26、(1)35;(2)190;(3)所有可能的情况见解析,.
浙江省丽水市2023-2024学年九上数学期末统考模拟试题含答案: 这是一份浙江省丽水市2023-2024学年九上数学期末统考模拟试题含答案,共7页。试卷主要包含了以为顶点的二次函数是,函数与,如图,在平面直角坐标系中,A等内容,欢迎下载使用。
2023-2024学年浙江省台州市名校数学九年级第一学期期末联考试题含答案: 这是一份2023-2024学年浙江省台州市名校数学九年级第一学期期末联考试题含答案,共7页。试卷主要包含了如果,那么下列比例式中正确的是等内容,欢迎下载使用。
浙江省2023-2024学年九年级数学第一学期期末联考模拟试题含答案: 这是一份浙江省2023-2024学年九年级数学第一学期期末联考模拟试题含答案,共8页。试卷主要包含了函数y=-x2-3的图象顶点是等内容,欢迎下载使用。