浙江省湖州市吴兴区十校联考2023-2024学年数学九年级第一学期期末教学质量检测模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每题4分,共48分)
1.从1到9这9个自然数中任取一个,既是2的倍数,又是3的倍数的概率是( )
A.B.C.D.
2.如图,下列条件中,能判定的是( )
A.B.C.D.
3.下列图形中,既是轴对称图形,又是中心对称图形的是( )
A.B.
C.D.
4.在矩形中,的角平分线与交于点,的角平分线与交于点,若,,则的长为( )
A.B.C.D.
5.下列图形中,不是中心对称图形的是( )
A.B.C.D.
6.如图,D是等边△ABC边AD上的一点,且AD:DB=1:2,现将△ABC折叠,使点C与D重合,折痕为EF,点E、F分别在AC、BC上,则CE:CF=( )
A.B.C.D.
7.抛物线与坐标轴的交点个数为( )
A.0B.1C.2D.3
8.若|a+3|+|b﹣2|=0,则ab的值为( )
A.﹣6 B.﹣9 C.9 D.6
9.如图,点E是正方形ABCD的边DC上一点,把△ADE绕点A顺时针旋转90°到△ABF的位置,若四边形AECF的面积为25,DE=3,则AE的长为( )
A.B.5C.8D.4
10.反比例函数的图象位于平面直角坐标系的( )
A.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限
11.一个不透明的盒子中放入四张卡片,每张卡片上都写有一个数字,分别是﹣2,﹣1,0,1.卡片除数字不同外其它均相同,从中随机抽取两张卡片,抽取的两张卡片上数字之积为负数的概率是( )
A.B.C.D.
12.函数y=mx2+2x+1的图像 与x轴只有1个公共点,则常数m的值是( )
A.1B.2C.0,1D.1,2
二、填空题(每题4分,共24分)
13.已知点A(4,3),AB∥y轴,且AB=3,则B点的坐标为_____.
14.已知点A(2,4)与点B(b﹣1,2a)关于原点对称,则ab=_____.
15.如图,二次函数y=x(x﹣3)(0≤x≤3)的图象,记为C1,它与x轴交于点O,A1;将C1点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;……若P(2020,m)在这个图象连续旋转后的所得图象上,则m=_____.
16.西周时期,丞相周公旦设置过一种通过测定日影长度来确定时间的仪器,称为圭表.如图是一个根据北京的地理位置设计的圭表,其中,立柱高为.已知,冬至时北京的正午日光入射角约为,则立柱根部与圭表的冬至线的距离(即的长)为______.
17.如图,在矩形ABCD中,AB=2,AD=,以点C为圆心,以BC的长为半径画弧交AD于E,则图中阴影部分的面积为__________.
18.如图,在边长为1的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点O,则tan∠AOD=________.
三、解答题(共78分)
19.(8分)某活动小组对函数的图象性质进行探究,请你也来参与
(1)自变量的取值范围是______;
(2)表中列出了、的一些对应值,则______;
(3)依据表中数据画出了函数图象的一部分,请你把函数图象补充完整;
(4)就图象说明,当方程共有4个实数根时,的取值范围是______.
20.(8分)一不透明的布袋里,装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中有红球2个,篮球1个,黄球若干个,现从中任意摸出一个球是红球的概率为.
(1)求口袋中黄球的个数;
(2)甲同学先随机摸出一个小球(不放回),再随机摸出一个小球,请用“树状图法”或“列表法”,求两次摸出都是红球的概率;
(3)现规定:摸到红球得5分,摸到黄球得3分(每次摸后放回),乙同学在一次摸球游戏中,第一次随机摸到一个红球第二次又随机摸到一个蓝球,若随机,再摸一次,求乙同学三次摸球所得分数之和不低于10分的概率.
21.(8分)如图,⊙O 是△ABC 的外接圆,O 点在 BC 边上,∠BAC 的平分线交⊙O 于点 D,连接 BD、CD,过点 D 作 BC 的平行线,与 AB 的延长线相交于点 P.
(1)求证:PD 是⊙O 的切线;
(2)求证:△PBD∽△DCA.
22.(10分)在平面直角坐标系xOy(如图)中,抛物线y=ax2+bx+2经过点A(4,0)、B(2,2),与y轴的交点为C.
(1)试求这个抛物线的表达式;
(2)如果这个抛物线的顶点为M,求△AMC的面积;
(3)如果这个抛物线的对称轴与直线BC交于点D,点E在线段AB上,且∠DOE=45°,求点E的坐标.
23.(10分)在平面直角坐标系中,抛物线经过点A、B、C,已知A(-1,0),B(3,0),C(0,-3).
(1)求此抛物线的函数表达式;
(2)若P为线段BC上一点,过点P作轴的平行线,交抛物线于点D,当△BCD面积最大时,求点P的坐标;
(3)若M(m,0)是轴上一个动点,请求出CM+MB的最小值以及此时点M的坐标.
24.(10分)已知是二次函数,且函数图象有最高点.
(1)求的值;
(2)当为何值时,随的增大而减少.
25.(12分)如图,反比例函数的图象过点A(2,3).
(1)求反比例函数的解析式;
(2)过A点作AC⊥x轴,垂足为C.若P是反比例函数图象上的一点,求当△PAC的面积等于6时,点P的坐标.
26.(12分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:
(1)方程ax2+bx+c=0的两个根为
(2)y随x的增大而减小的自变量x的取值范围为 ;
(3)若方程ax2+bx+c=k有两个不相等的实数根时,k的取值范围为 ;
(4)求出此抛物线的解析式.
参考答案
一、选择题(每题4分,共48分)
1、A
2、D
3、C
4、D
5、B
6、B
7、C
8、C
9、A
10、A
11、B
12、C
二、填空题(每题4分,共24分)
13、(4,6)或(4,0)
14、1.
15、1.
16、
17、
18、1
三、解答题(共78分)
19、(1)全体实数;(2)1;(3)见解析;(4).
20、 (1)黄球有1个;(2);(3).
21、(1)见解析;(2)见解析
22、(1)y=;(1);(3)点E的坐标为(3,1).
23、(1);(2)P(,),面积最大为;(3)CM+MB最小值为,M(,0)
24、(1);(2)当时,随的增大而减少
25、 (1) y=;(2)(1,1),(﹣2,﹣3).
26、(1)x1=1,x2=1;(2)x>2;(1)k<2;(4).
0
1
2
3
3
0
0
3
2023-2024学年浙江省湖州市吴兴区十校联考数学九上期末质量跟踪监视试题含答案: 这是一份2023-2024学年浙江省湖州市吴兴区十校联考数学九上期末质量跟踪监视试题含答案,共7页。试卷主要包含了如图,已知,下列事件中为必然事件的是等内容,欢迎下载使用。
浙江省湖州市吴兴区十学校2023-2024学年九上数学期末教学质量检测模拟试题含答案: 这是一份浙江省湖州市吴兴区十学校2023-2024学年九上数学期末教学质量检测模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
浙江省湖州市吴兴区十校联考2023-2024学年八年级数学第一学期期末综合测试模拟试题含答案: 这是一份浙江省湖州市吴兴区十校联考2023-2024学年八年级数学第一学期期末综合测试模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,计算,已知点A,计算等于等内容,欢迎下载使用。