浙江省绍兴市海亮2023-2024学年数学九年级第一学期期末学业质量监测模拟试题含答案
展开
这是一份浙江省绍兴市海亮2023-2024学年数学九年级第一学期期末学业质量监测模拟试题含答案,共9页。试卷主要包含了关于抛物线,下列结论中正确的是等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每题4分,共48分)
1.关于x的一元二次方程x2﹣(k+3)x+2k+2=0的根的情况,下面判断正确的是( )
A.有两个相等的实数根B.有两个不相等的实数根C.有两个实数根D.无实数根
2.如图,四边形ABCD是圆内接四边形,E是BC延长线上一点,若∠BAD=105°,则∠DCE的大小是( )
A.115°B.105°C.100°D.95°
3.关于抛物线,下列结论中正确的是( )
A.对称轴为直线
B.当时,随的增大而减小
C.与轴没有交点
D.与轴交于点
4.如图,l1∥l2∥l3,直线a,b与l1、l2、l3分别相交于A、B、C和点D、E、F.若,DE=4.2,则DF的长是( )
A.B.6C.6.3D.10.5
5.△ABC中,∠C=Rt∠,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB、BC分别交于点E、D,则AE的长为( )
A.B.C.D.
6.在平面直角坐标系中,点A(0,2)、B(a,a+2)、C(b,0)(a>0,b>0),若AB=且∠ACB最大时,b的值为( )
A.B.C.D.
7.下列四个图形分别是四届国际数学家大会的会标,其中不属于中心对称图形的是( )
A.B.C.D.
8.二次函数化为的形式,下列正确的是( )
A. B.
C. D.
9.如图,⊙O是△ABC的外接圆,∠B=60°,OP⊥AC于点P,OP=2,则⊙O的半径为( ).
A.4B.6C.8D.12
10.如图是半径为2的⊙O的内接正六边形ABCDEF,则圆心O到边AB的距离是( )
A.2B.1C.D.
11.已知一个扇形的半径为60cm,圆心角为180°,若用它做成一个圆锥的侧面,则这个圆锥的底面半径为( )
A.15cmB.20cmC.25cmD.30cm
12.将半径为5的圆形纸片,按如图方式折叠,若和都经过圆心,则图中阴影部分的面积是( )
A.B.C.D.
二、填空题(每题4分,共24分)
13.如图,在矩形ABCD中,AB=4,BC=8,将矩形沿对角线BD折叠,使点C落在点E处,BE交AD于点F,则BF的长为________.
14.一天晚上,小伟帮助妈妈清洗两个只有颜色不同的有盖茶杯,突然停电了,小伟只好把杯盖和茶杯随机地搭配在一起,则颜色搭配正确的概率是_____.
15.如图所示,已知中,,边上的高,为上一点,,交于点,交于点,设点到边的距离为.则的面积关于的函数图象大致为__________.
16.抛物线向右平移个单位,向上平移1个单位长度得到的抛物线解析式是_____
17.在中,若,则是_____三角形.
18.如图所示,在中,,垂直平分,交于点,垂足为点,,,则等于___________.
三、解答题(共78分)
19.(8分)将矩形ABCD绕点A顺时针旋转α(0°<α<360°),得到矩形AEFG.
(1)如图,当点E在BD上时.求证:FD=CD;
(2)当α为何值时,GC=GB?画出图形,并说明理由.
20.(8分)国家创新指数是反映一个国家科学技术和创新竞争力的综合指数.对国家创新指数得分排名前40的国家的有关数据进行收集、整理、描述和分析.下面给出了部分信息:
a.国家创新指数得分的频数分布直方图(数据分成7组:
30≤x<40,40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100);
b.国家创新指数得分在60≤x<70这一组的是:61.7 62.4 63.6 65.9 66.4 68.5 69.1 69.3 69.5
c.40个国家的人均国内生产总值和国家创新指数得分情况统计图:
d.中国的国家创新指数得分为69.5.
(以上数据来源于《国家创新指数报告(2018)》)
根据以上信息,回答下列问题:
(1)中国的国家创新指数得分排名世界第______;
(2)在40个国家的人均国内生产总值和国家创新指数得分情况统计图中,包括中国在内的少数几个国家所对应的点位于虚线的上方.请在图中用“”圈出代表中国的点;
(3)在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为______万美元;(结果保留一位小数)
(4)下列推断合理的是______.
①相比于点A,B所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;
②相比于点B,C所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗目标,进一步提高人均国内生产总值.
21.(8分)如图,在正方形中,点是的中点,连接,过点作交于点,交于点.
(1)证明:;
(2)连接,证明:.
22.(10分)因2019年下半年猪肉大涨,某养猪专业户想扩大养猪场地,但为了节省材料,利用一面墙(墙足够长)为一边,用总长为120的材料围成了如图所示①②③三块矩形区域,而且这三块矩形区域的面积相等,设的长度为(),矩形区域的面积().
(1)求与之间的函数表达式,并注明自变量的取值范围.
(2)当为何值时,有最大值?最大值是多少?
23.(10分)如图,(1)某学校“智慧方园”数学社团遇到这样一个题目:如图1,在△ABC中,点O在线段BC上,∠BAO=20°,∠OAC=80°,AO=,BO:CO=1:3,求AB的长.经过社团成员讨论发现,过点B作BD∥AC,交AO的延长线于点D,通过构造△ABD就可以解决问题(如图2),请回答:∠ADB= °,AB= .
(2)请参考以上思路解决问题:如图3,在四边形ABCD中,对角线AC、BD相交于点O,AC⊥AD,AO=6,∠ABC=∠ACB=75°,BO:OD=1:3,求DC的长.
24.(10分)如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于点和.
求一次函数和反比例函数的表达式;
请直接写出时,x的取值范围;
过点B作轴,于点D,点C是直线BE上一点,若,求点C的坐标.
25.(12分)现有三张分别标有数字-1,0,3的卡片,它们除数字外完全相同,将卡片背面朝上后洗匀.
(1)从中任意抽取一张卡片,抽到标有数字3的卡片的概率为 ;
(2)从中任意抽取两张卡片,求两张卡片上的数字之和为负数的概率.
26.(12分)为了创建文明城市,增强学生的环保意识.随机抽取8名学生,对他们的垃圾分类投放情况进行调查,这8名学生分别标记为,其中“√”表示投放正确,“×”表示投放错误,统计情况如下表.
(1)求8名学生中至少有三类垃圾投放正确的概率;
(2)为进一步了解垃圾分类投放情况,现从8名学生里“有害垃圾”投放错误的学生中随机抽取两人接受采访,试用标记的字母列举所有可能抽取的结果.
参考答案
一、选择题(每题4分,共48分)
1、C
2、B
3、B
4、D
5、C
6、B
7、A
8、B
9、A
10、C
11、D
12、B
二、填空题(每题4分,共24分)
13、5
14、
15、抛物线y =-x2+6x.(0<x<6)的部分.
16、
17、等腰
18、3cm
三、解答题(共78分)
19、 (1)见解析;(2)见解析.
20、(1)17;(2)如图所示,见解析;(3)2.8;(4)①②.
21、(1)见解析;(2)见解析.
22、(1);(2)时,有最大值
23、(1)80,8;(2)DC=8
24、反比例函数的解析式为,一次函数解析式为:;当或时,;当点C的坐标为或时,.
25、(1);(2).
26、(1)8名学生中至少有三类垃圾投放正确的概率为;(2)列表见解析.
学生
垃圾类别
厨余垃圾
√
√
√
√
√
√
√
√
可回收垃圾
√
×
√
×
×
√
√
√
有害垃圾
×
√
×
√
√
×
×
√
其他垃圾
×
√
√
×
×
√
√
√
相关试卷
这是一份浙江省绍兴市海亮2023-2024学年数学九年级第一学期期末学业质量监测试题含答案,共6页。试卷主要包含了抛物线的顶点坐标是等内容,欢迎下载使用。
这是一份浙江省绍兴市海亮2023-2024学年数学八年级第一学期期末教学质量检测模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔,下列计算正确的是等内容,欢迎下载使用。
这是一份浙江省绍兴市暨阳2023-2024学年八上数学期末学业质量监测模拟试题含答案,共7页。试卷主要包含了答题时请按要求用笔,下列条件中能作出唯一三角形的是,要使分式无意义,则的取值范围是等内容,欢迎下载使用。