浙江省绍兴市上虞实验中学2023-2024学年九年级数学第一学期期末监测模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1.把抛物线y=﹣x2向右平移1个单位,再向下平移2个单位,所得抛物线是( )
A.y=(x﹣1)+2B.y=﹣(x﹣1)+2
C.y=﹣(x+1)+2D.y=﹣(x﹣1)﹣2
2.下列手机应用图标中,是中心对称图形的是( )
A.B.C.D.
3.如图,与是以坐标原点为位似中心的位似图形,若点是的中点,的面积是6,则的面积为( )
A.9B.12C.18D.24
4.如图,点A、B、C在⊙O上,则下列结论正确的是( )
A.∠AOB=∠ACB
B.∠AOB=2∠ACB
C.∠ACB的度数等于的度数
D.∠AOB的度数等于的度数
5.有一个正方体,6个面上分别标有1~6这6个整数,投掷这个正方体一次,则出现向上一面的数字是奇数的概率为( )
A.B.C.D.
6.如图,在△ABC中,DE∥BC,若=,则的值为( )
A.B.C.D.
7.如图,AB是半圆的直径,AB=2r,C、D为半圆的三等分点,则图中阴影部分的面积是( )。
A.πr2B.πr2C.πr2D.πr2
8.如图是二次函数图像的一部分,直线是对称轴,有以下判断:①;②>0;③方程的两根是2和-4;④若是抛物线上两点,则>;其中正确的个数有( )
A.1B.2C.3D.4
9.如图,在△ABC中,D,E分别是AB和AC上的点,且DE∥BC,,DE=6,则BC的长为( )
A.8B.9C.10D.12
10.下列一元二次方程中,有一个实数根为1的一元二次方程是( )
A.x2+2x-4=0B.x 2-4x+4=0
C.x 2+4x+10=0D.x 2+4x-5=0
11.某市为了改善城市容貌,绿化环境,计划过两年时间,绿地面积增加44%,这两年平均每年绿地面积的增长率是 ( )
A.19%B.20%C.21%D.22%
12.一个由小菱形组成的装饰链,断去了一部分,剩下部分如图所示,则断去部分的小菱形的个数可能是( )
A.6 个B.7个C.8个D.9 个
二、填空题(每题4分,共24分)
13.如图所示,某建筑物有一抛物线形的大门,小明想知道这道门的高度,他先测出门的宽度,然后用一根长为的小竹竿竖直的接触地面和门的内壁,并测得,则门高为__________.
14.在某一时刻,测得一根高为2m的竹竿的影长为1m,同时测得一栋建筑物的影长为12m,那么这栋建筑物的高度为_____m.
15.如图,分别以等边三角形的每个顶点为圆心,边长为半径,在另两个顶点之间作一段弧,三段弧围成的曲边三角形称为“勒洛三角形”,若等边三角形的边长为2,则“勒洛三角形”的面积为_________.
16.点P(4,﹣6)关于原点对称的点的坐标是_____.
17.若x=是一元二次方程的一个根,则n的值为 ____.
18.一件商品的原价是100元,经过两次提价后的价格为121元,设平均每次提价的百分率都是x.根据题意,可列出方程___________________.
三、解答题(共78分)
19.(8分)已知关于x的一元二次方程x2﹣(2k+1)x+4k﹣3=0,
(1)求证:无论k取什么实数值,该方程总有两个不相等的实数根?
(2)当Rt△ABC的斜边a=,且两条直角边的长b和c恰好是这个方程的两个根时,求k的值.
20.(8分)(1)解方程:.
(2)已知:关于x的方程
①求证:方程有两个不相等的实数根;
②若方程的一个根是,求另一个根及k值.
21.(8分)图①是一枚质地均匀的正四面体形状的骰子,每个面上分别标有数字1,2,3,4,图②是一个正六边形棋盘,现通过掷骰子的方式玩跳棋游戏,规则是:将这枚骰子掷出后,看骰子向上三个面(除底面外)的数字之和是几,就从图②中的A点开始沿着顺时针方向连续跳动几个顶点,第二次从第一次的终点处开始,按第一次的方法跳动.
(1)随机掷一次骰子,则棋子跳动到点C处的概率是
(2)随机掷两次骰子,用画树状图或列表的方法,求棋子最终跳动到点C处的概率.
22.(10分)如图,一面利用墙,用篱笆围成的矩形花圃ABCD的面积为Sm2,垂直于墙的AB边长为xm.
(1)若墙可利用的最大长度为8m,篱笆长为18m,花圃中间用一道篱笆隔成两个小矩形.
①求S与x之间的函数关系式;
②如何围矩形花圃ABCD的面积会最大,并求最大面积.
(2)若墙可利用最大长度为50m,篱笆长99m,中间用n道篱笆隔成(n+1)小矩形,当这些小矩形都是正方形且x为正整数时,请直接写出所有满足条件的x、n的值.
23.(10分)小明和小军两人一起做游戏,游戏规则如下:每人从1,2,…,8中任意选择一个数字,然后两人各转动一次如图所示的转盘(转盘被分为面积相等的四个扇形),两人转出的数字之和等于谁事先选择的数,谁就获胜;若两人转出的数字之和不等于他们各自选择的数,就在做一次上述游戏,直至决出胜负.若小军事先选择的数是5,用列表或画树状图的方法求他获胜的概率.
24.(10分)如图,的顶点是双曲线与直线在第二象限的交点.轴于,且.
(1)求反比例函数的解析式;
(2)直线与双曲线交点为、,记的面积为,的面积为,求
25.(12分)如图,海中有两个小岛,,某渔船在海中的处测得小岛D位于东北方向上,且相距,该渔船自西向东航行一段时间到达点处,此时测得小岛恰好在点的正北方向上,且相距,又测得点与小岛相距.
(1)求的值;
(2)求小岛,之间的距离(计算过程中的数据不取近似值).
26.(12分)如图,在平面直角坐标系中,抛物线行经过点和点,交轴正半轴于点,连接,点是线段上动点(不与点重合),以为边在轴上方作正方形,接,将线段绕点逆时针旋转90°,得到线段,过点作轴,交抛物线于点,设点.
(1)求抛物线的解析式;
(2)若与相似求的值;
(3)当时,求点的坐标.
参考答案
一、选择题(每题4分,共48分)
1、D
2、B
3、D
4、B
5、A
6、A
7、D
8、C
9、C
10、D
11、B
12、C
二、填空题(每题4分,共24分)
13、
14、1.
15、
16、 (﹣4,6)
17、.
18、100(1+x)2=1.
三、解答题(共78分)
19、(1)见解析;(2)1
20、(1)x1=1,x1=1;(1)①见解析;②另一个根为1,
21、(1);(2)棋子最终跳动到点C处的概率为.
22、(1)①S=﹣3x2+18x;②当x=3米时,S最大,为27平方米;(2)n=3,x=11;或n=4,x=9,或n=15,x=3,或n=48,x=1
23、.
24、(1);(2)
25、 (1);(2)小岛、相距.
26、(1)y=-x2+3x+4;(2)a=或;(3)点P的坐标为(1,4)或(2,4)或(,4)
浙江省绍兴市阳明中学2023-2024学年数学九上期末监测模拟试题含答案: 这是一份浙江省绍兴市阳明中学2023-2024学年数学九上期末监测模拟试题含答案,共8页。试卷主要包含了如图,⊙中,,则等于等内容,欢迎下载使用。
2023-2024学年浙江省绍兴市柯桥区九年级数学第一学期期末监测模拟试题含答案: 这是一份2023-2024学年浙江省绍兴市柯桥区九年级数学第一学期期末监测模拟试题含答案,共8页。
浙江省绍兴市柯桥区实验中学2023-2024学年九年级数学第一学期期末学业质量监测试题含答案: 这是一份浙江省绍兴市柯桥区实验中学2023-2024学年九年级数学第一学期期末学业质量监测试题含答案,共8页。试卷主要包含了答题时请按要求用笔,下列说法中正确的有等内容,欢迎下载使用。