江西省九江市第十一中学2023-2024学年数学九年级第一学期期末学业水平测试试题含答案
展开
这是一份江西省九江市第十一中学2023-2024学年数学九年级第一学期期末学业水平测试试题含答案,共8页。试卷主要包含了答题时请按要求用笔,如图,中,,,,则,下列说法正确的是,在中,,,,则的值是,下列不是中心对称图形的是等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每题4分,共48分)
1.下列事件中,是必然事件的是( )
A.掷一枚质地均匀的骰子,向上一面的点数为偶数
B.三角形的内角和等于180°
C.不透明袋子中装有除色外无其它差别的9个白球,1个黑球,从中摸出一球为白球
D.抛掷一枚质地均匀的硬币2次,出现1次“正面向上”,1次“反面向上”
2.已知反比例函数,当x>0时,y随x的增大而增大,则k的取值范围是( )
A.k>0B.k<0C.k≥1D.k≤1
3.如图,函数与函数在同一坐标系中的图象如图所示,则当时( ).
A.1 x 1B.1 x 0 或 x 1C.1 x 1 且 x 0D.0 x 1或 x 1
4.将抛物线向上平移两个单位长度,再向右平移一个单位长度后,得到的抛物线解析式是( )
A.B.C.D.
5.下列成语所描述的事件是不可能事件的是( )
A.日行千里B.守株待兔C.水涨船高D.水中捞月
6.小悦乘座中国最高的摩天轮“南昌之星”,从最低点开始旋转一圈,她离地面的高度y(米)与旋转时间x(分)之间的关系可以近似地用二次函数来刻画.经测试得出部分数据如表.根据函数模型和数据,可推断出南昌之星旋转一圈的时间大约是( )
A.32分B.30分C.15分D.13分
7.如图,中,,,,则( )
A.B.C.D.
8.下列说法正确的是( )
A.25人中至少有3人的出生月份相同
B.任意抛掷一枚均匀的1元硬币,若上一次正面朝上,则下一次一定反面朝上
C.天气预报说明天降雨的概率为10%,则明天一定是晴天
D.任意抛掷一枚均匀的骰子,掷出的点数小于3的概率是
9.在中,,,,则的值是( )
A.B.C.D.
10.下列不是中心对称图形的是( )
A.B.C.D.
11.方程变为的形式,正确的是( )
A.B.
C.D.
12.如图,在平面直角坐标系中,若反比例函数过点,则的值为( )
A.B.C.D.
二、填空题(每题4分,共24分)
13.如图,是反比例函数的图象上一点,过点作轴交反比例函数的图象于点,已知的面积为,则的值为___________.
14.如图所示,半圆O的直径AB=4,以点B为圆心,为半径作弧,交半圆O于点C,交直径AB于点D,则图中阴影部分的面积是_____________.
15.如图,在△ABC中,AB=AC=3,∠BAC=90°,正方形DEFG的四个顶点在△ABC的边上,连接AG、AF分别交DE于点M和点N,则线段MN的长为_____.
16.一个圆锥的侧面展开图是半径为6,圆心角为120°的扇形,那么这个圆锥的底面圆的半径为____.
17.如图,AB是半圆O的直径,AB=10,过点A的直线交半圆于点C,且sin∠CAB=,连结BC,点D为BC的中点.已知点E在射线AC上,△CDE与△ACB相似,则线段AE的长为________;
18.将一枚标有数字1、2、3、4、5、6的均匀正方体骰子抛掷一次,则向上一面数字为奇数的概率等于_____.
三、解答题(共78分)
19.(8分)长城公司为希望小学捐赠甲、乙两种品牌的体育器材,甲品牌有A、B、C三种型号,乙品牌有D、E两种型号,现要从甲、乙两种品牌的器材中各选购一种型号进行捐赠.
(1)写出所有的选购方案(用列表法或树状图);
(2)如果在上述选购方案中,每种方案被选中的可能性相同,那么A型器材被选中的概率是多少.
20.(8分)我市某公司用800万元购得某种产品的生产技术后,进一步投入资金1550万元购买生产设备,进行该产品的生产加工,已知生产这种产品每件还需成本费40元.经过市场调研发现:该产品的销售单价需要定在200元到300元之间较为合理.销售单价(元)与年销售量(万件)之间的变化可近似的看作是如下表所反应的一次函数:
(1)请求出与之间的函数关系式,并直接写出自变量的取值范围;
(2)请说明投资的第一年,该公司是盈利还是亏损?若盈利,最大利润是多少?若亏损,最少亏损是多少?
21.(8分)已知二次函数中,函数与自变量的部分对应值如下表:
(1)求该二次函数的表达式;
(2)当时,的取值范围是 .
22.(10分)如图,AB是半圆O的直径,C为半圆弧上一点,在AC上取一点D,使BC=CD,连结BD并延长交⊙O于E,连结AE,OE交AC于F.
(1)求证:△AED是等腰直角三角形;
(2)如图1,已知⊙O的半径为.
①求的长;
②若D为EB中点,求BC的长.
(3)如图2,若AF:FD=7:3,且BC=4,求⊙O的半径.
23.(10分)一个不透明的布袋中有完全相同的三个小球,把它们分别标号为1,2,3. 小林和小华做一个游戏,按照以下方式抽取小球:先从布袋中随机抽取一个小球,记下标号后放回布袋中搅匀,再从布袋中随机抽取一个小球, 记下标号. 若两次抽取的小球标号之和为奇数,小林赢;若标号之和为偶数,则小华赢.
(1)用画树状图或列表的方法,列出前后两次取出小球上所标数字的所有可能情况;
(2)请判断这个游戏是否公平,并说明理由.
24.(10分)如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接DG,过点A作AH∥DG,交BG于点H.连接HF,AF,其中AF交EC于点M.
(1)求证:△AHF为等腰直角三角形.
(2)若AB=3,EC=5,求EM的长.
25.(12分)(问题情境)
(1)古希腊著名数学家欧几里得在《几何原本》提出了射影定理,又称“欧几里德定理”:在直角三角形中,斜边上的高是两条直角边在斜边射影的比例中项,每一条直角边又是这条直角边在斜边上的射影和斜边的比例中项.射影定理是数学图形计算的重要定理.其符号语言是:如图1,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,则:(1)AC²=AB·AD;(2)BC²=AB·BD;(3)CD² = AD·BD;请你证明定理中的结论(1)AC² = AB·AD.
(结论运用)
(2)如图2,正方形ABCD的边长为3,点O是对角线AC、BD的交点,点E在CD上,过点C作CF⊥BE,垂足为F,连接OF,
①求证:△BOF∽△BED;
②若,求OF的长.
26.(12分)在“书香校园”活动中,某校为了解学生家庭藏书情况,随机抽取本校部分学生进行调查,并绘制成部分统计图表如下:
根据以上信息,解答下列问题:
(1)该调查的样本容量为 ,a= ;
(2)随机抽取一位学生进行调查,刚好抽到A类学生的概率是 ;
(3)若该校有2000名学生,请估计全校学生中家庭藏书不少于76本的人数.
参考答案
一、选择题(每题4分,共48分)
1、B
2、B
3、B
4、D
5、D
6、B
7、B
8、A
9、D
10、A
11、B
12、C
二、填空题(每题4分,共24分)
13、4
14、
15、.
16、2
17、3或9 或或
18、.
三、解答题(共78分)
19、(1)答案见解析;(2)
20、(1);(2)亏损,赔了110万元
21、(1)或;(2)或
22、 (1)见解析;(2)①;②;(3)
23、(1);(2)不公平,理由见解析
24、(1)见解析;(2)EM=
25、(1)见解析;(2)①见解析;②
26、(1)200,64;(2)0.1;(3)全校学生中家庭藏书不少于76本的人数为660人.
x(分)
…
13.5
14.7
16.0
…
y(米)
…
156.25
159.85
158.33
…
销售单价(元)
200
230
250
年销售量(万件)
14
11
9
···
···
···
···
类别
家庭藏书m本
学生人数
A
0≤m≤25
20
B
26≤m≤50
a
C
51≤m≤75
50
D
m≥76
66
相关试卷
这是一份江西省赣州宁都县联考2023-2024学年九年级数学第一学期期末学业水平测试试题含答案,共8页。试卷主要包含了答题时请按要求用笔,二次函数y=a等内容,欢迎下载使用。
这是一份2023-2024学年江西省萍乡市芦溪县九年级数学第一学期期末学业水平测试试题含答案,共8页。试卷主要包含了对于问题,如果,那么锐角A的度数是等内容,欢迎下载使用。
这是一份2023-2024学年江西省数学九年级第一学期期末学业水平测试模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。