河南省固始县联考2023-2024学年数学九年级第一学期期末学业水平测试模拟试题含答案
展开学校_______ 年级_______ 姓名_______
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每题4分,共48分)
1.如图,正三角形ABC的边长为4cm,D,E,F分别为BC,AC,AB的中点,以A,B,C三点为圆心,2cm为半径作圆.则图中阴影部分面积为( )
A.(2-π)cm2B.(π-)cm2C.(4-2π)cm2D.(2π-2)cm2
2.如图,P为平行四边形ABCD的对称中心,以P为圆心作圆,过P的任意直线与圆相交于点M,N.则线段BM,DN的大小关系是( )
A.BM>DNB.BM<DNC.BM=DND.无法确定
3.掷一枚质地均匀的硬币10次,下列说法正确的是( )
A.每2次必有一次正面朝上B.必有5次正面朝上
C.可能有7次正面朝上D.不可能有10次正面朝上
4.若不等式组无解,则的取值范围为( )
A.B.C.D.
5.二次函数的部分图象如图所示,图象过点,对称轴为.下列说法:①;②;③4;④若,是抛物线上两点,则,错误的是( )
A.①B.②C.③D.④
6.下列说法正确的是( )
A.“清明时节雨纷纷”是必然事件
B.要了解路边行人边步行边低头看手机的情况,可采取对在路边行走的学生随机发放问卷的方式进行调查
C.做重复试验:抛掷同一枚瓶盖1000次,经过统计得“凸面向上”的频数为550次,则可以由此估计抛掷这枚瓶盖出现“凸面向上”的概率为0.55
D.射击运动员甲、乙分别射击10次且击中环数的方差分别是0.5和1.2,则运动员甲的成绩较好
7.某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x,那么x满足的方程是
A.50(1+x2)=196B.50+50(1+x2)=196
C.50+50(1+x)+50(1+x)2=196D.50+50(1+x)+50(1+2x)=196
8.数据0,-1,-2,2,1,这组数据的中位数是( )
A.-2B.2C.0.5D.0
9.用配方法解方程时,可将方程变形为( )
A.B.C.D.
10.下列几何图形不是中心对称图形的是( )
A.平行四边形B.正五边形C.正方形D.正六边形
11.定义新运算:,例如:,,则y=2⊕x(x≠0)的图象是( )
A.B.C.D.
12.已知二次函数y=ax2+bx+c的图象如图所示,下列结i论:①abc>1;②b2﹣4ac>1;③2a+b=1;④a﹣b+c<1.其中正确的结论有( )
A.1个B.2个C.3个D.4个
二、填空题(每题4分,共24分)
13.在函数y=+(x﹣5)﹣1中,自变量x的取值范围是_____.
14.如图,在菱形中,,,点,,分别为线段,,上的任意一点,则的最小值为__________.
15.如图在圆心角为的扇形中,半径,以为直径作半圆.过点作的平行线交两弧分别于点,则图中阴影部分的面积是_______.
16.如图,有一张矩形纸片,长15cm,宽9cm,在它的四角各剪去一个同样的小正方形,然折叠成一个无盖的长方体纸盒.若纸盒的底面(图中阴影部分)面积是48cm2,求剪去的小正方形的边长.设剪去的小正方形边长是xcm,根据题意可列方程为_____.
17.在比例尺为1:40000的地图上,某条道路的长为7cm,则该道路的实际长度是_____km.
18.点P(3,﹣4)关于原点对称的点的坐标是_____.
三、解答题(共78分)
19.(8分)如图,在东西方向的海面线上,有,两艘巡逻船和观测点(,,在直线上),两船同时收到渔船在海面停滞点发出的求救信号.测得渔船分别在巡逻船,北偏西和北偏东方向,巡逻船和渔船相距120海里,渔船在观测点北偏东方向.(说明:结果取整数.参考数据:,.)
(1)求巡逻船与观测点间的距离;
(2)已知观测点处45海里的范围内有暗礁.若巡逻船沿方向去营救渔船有没有触礁的危险?并说明理由.
20.(8分) “共和国勋章”是中华人民共和国的最高荣誉勋章,在2019年获得“共和国勋章”的八位杰出人物中,有于敏、孙家栋、袁隆平、黄旭华四位院士.如图是四位院士(依次记为、、、).为让同学们了解四位院士的贡献,老师设计如下活动:取四张完全相同的卡片,分别写上、、、四个标号,然后背面朝上放置,搅匀后每个同学从中随机抽取一张,记下标号后放回,老师要求每位同学依据抽到的卡片上的标号查找相应院士的资料,并做成小报.
(1)班长在四种卡片中随机抽到标号为C的概率为______.
(2)请用画树状图或列表的方法求小明和小华查找不同院士资料的概率.
21.(8分)如图,△ABC是等边三角形,AO⊥BC,垂足为点O,⊙O与AC相切于点D,BE⊥AB交AC的延长线于点E,与⊙O相交于G,F两点.
(1)求证:AB与⊙O相切;
(2)若AB=4,求线段GF的长.
22.(10分)已知△ABC为等边三角形, M为三角形外任意一点,把△ABM绕着点A按逆时针方向旋转60°到△CAN的位置.
(1)如图①,若∠BMC=120°,BM=2,MC=3.求∠AMB的度数和求AM的长.
(2)如图②,若∠BMC = n°,试写出AM、BM、CM之间的数量关系,并证明你的猜想.
23.(10分)如图,在平面直角坐标系中,点是轴正半轴上的一动点,抛物线(是常数,且过点,与轴交于两点,点在点左侧,连接,以为边做等边三角形,点与点在直线两侧.
(1)求B、C的坐标;
(2)当轴时,求抛物线的函数表达式;
(3)①求动点所成的图像的函数表达式;
②连接,求的最小值.
24.(10分)在日常生活中我们经常会使用到订书机,如图MN是装订机的底座,AB是装订机的托板AB始终与底座平行,连接杆DE的D点固定,点E从A向B处滑动,压柄BC绕着转轴B旋转.已知连接杆BC的长度为20cm,BD= cm,压柄与托板的长度相等.
(1)当托板与压柄的夹角∠ABC=30°时,如图①点E从A点滑动了2cm,求连接杆DE的长度.
(2)当压柄BC从(1)中的位置旋转到与底座垂直,如图②.求这个过程中,点E滑动的距离.(结果保留根号)
25.(12分)如图,在△ABC中,AB=AC,以AB为直径作⊙O交BC于点D.过点D作EF⊥AC,垂足为E,且交AB的延长线于点F.
(1)求证:EF是⊙O的切线;
(2)已知AB=4,AE=1.求BF的长.
26.(12分)如图,已知抛物线与x轴交于A、B两点,与y轴交于C点,其中A(1,0),C(0,3).
(1)求该抛物线的解析式;
(2)求该抛物线的对称轴及点B的坐标;
(3)设点P为该抛物线对称轴上的一个动点,是否存在点P使△BPC为直角三角形,若存在,求出点P的坐标;若不存在,请说明理由.
参考答案
一、选择题(每题4分,共48分)
1、C
2、C
3、C
4、A
5、C
6、C
7、C
8、D
9、D
10、B
11、D
12、C
二、填空题(每题4分,共24分)
13、x≥4且x≠1
14、
15、
16、(15﹣2x)(9﹣2x)=1.
17、2.1
18、(﹣3,4).
三、解答题(共78分)
19、(1)76海里;(2)没有触礁的危险,理由见解析
20、 (1);(2).
21、(1)见解析;(2)2.
22、(1)60°,5;(2)AM=BM+CM
23、(1)、;(2);(3)①;②.
24、(1)DE=2cm;(2)这个过程中,点E滑动的距离(18-6)cm.
25、(1)证明见解析;(2)2.
26、(1);(2)x=-1;(-3,0);(3)存在;P的坐标为或或或.
河南省周口商水县联考2023-2024学年数学九上期末学业水平测试模拟试题含答案: 这是一份河南省周口商水县联考2023-2024学年数学九上期末学业水平测试模拟试题含答案,共8页。
河南省平顶山宝丰县联考2023-2024学年九上数学期末学业水平测试模拟试题含答案: 这是一份河南省平顶山宝丰县联考2023-2024学年九上数学期末学业水平测试模拟试题含答案,共8页。试卷主要包含了小明沿着坡度为1等内容,欢迎下载使用。
河南省信阳固始县联考2023-2024学年九年级数学第一学期期末综合测试模拟试题含答案: 这是一份河南省信阳固始县联考2023-2024学年九年级数学第一学期期末综合测试模拟试题含答案,共6页。试卷主要包含了方程的根是,一元二次方程的解是等内容,欢迎下载使用。