浙江省嘉兴市南湖区北师大南湖附校2023-2024学年数学九上期末学业水平测试模拟试题含答案
展开
这是一份浙江省嘉兴市南湖区北师大南湖附校2023-2024学年数学九上期末学业水平测试模拟试题含答案,共7页。试卷主要包含了若二次函数的图象经过点,在平面直角坐标系中,点P等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每题4分,共48分)
1.有5个完全相同的卡片,正面分别写有1,2,3,4,5这5个数字,现把卡片背面朝上,从中随机抽取一个卡片,其数字是奇数的概率为( )
A.B.C.D.
2.样本中共有5个个体,其值分别为a,0,1,2,3.若该样本的平均值为1,则样本方差为( )
A.65B.65C.2D.
3.若二次函数的图象经过点(﹣1,0),则方程的解为( )
A.,B.,C.,D.,
4.若关于x的一元二次方程kx2﹣4x+3=0有实数根,则k的非负整数值是( )
A.1B.0,1C.1,2D.1,2,3
5.在平面直角坐标系中,点P(–2,3)关于原点对称的点Q的坐标为( )
A.(2,–3)B.(2,3)C.(3,–2)D.(–2,–3)
6.如图,正方形ABCD和正方形DEFG的顶点A在y轴上,顶点D,F在x轴上,点C在DE边上,反比例函数y=(k≠0)的图象经过点B、C和边EF的中点M.若S正方形ABCD=2,则正方形DEFG的面积为( )
A.B.C.4D.
7.若用圆心角为120°,半径为9的扇形围成一个圆锥侧面(接缝忽略不计),则这个圆锥的底面直径是( )
A.3B.6
C.9D.12
8.已知,,且的面积为,周长是的周长的,,则边上的高等于( )
A.B.C.D.
9.如图,,两条直线与这三条平行线分别交于点、、和、、,若,则的值为( )
A.B.C.D.
10.在同一坐标系中,一次函数与二次函数的图象可能是( ).
A.B.C.D.
11.已知,则为( )
A.B.C.D.
12.从 1 到 9这9个自然数中任取一个,是偶数的概率是( )
A.B.C.D.
二、填空题(每题4分,共24分)
13.平面直角坐标系中,点A,B的坐标分别是A(2,4),B(3,0),在第一象限内以原点O为位似中心,把△OAB缩小为原来的,则点A的对应点A' 的坐标为__________.
14.经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x,根据题意可列方程是__________________________.
15.动点A(m+2,3m+4)在直线l上,点B(b,0)在x轴上,如果以B为圆心,半径为1的圆与直线l有交点,则b的取值范围是_____.
16.如图,将半径为2,圆心角为90°的扇形BAC绕点A逆时针旋转60°,点B、C的对应点分别为D、E,点D在上,则阴影部分的面积为_____.
17.已知点P是线段AB的黄金分割点,AP>PB.若AB=2,则AP=_____.
18.已知二次函数y=ax2+3ax+c的图象与x轴的一个交点为(﹣4,0),则它与x轴的另一个交点的坐标是___.
三、解答题(共78分)
19.(8分)在平面直角坐标系中,的顶点分别为、、.
(1)将绕点顺时针旋转得到,画图并写出点的坐标.
(2)作出关于中心对称图形.
20.(8分)已知抛物线的顶点为,且过点.直线与轴相交于点.
(1)求该抛物线的解析式;
(2)以线段为直径的圆与射线相交于点,求点的坐标.
21.(8分)如图,已知抛物线y=﹣x2+bx+3的对称轴为直线x=﹣1,分别与x轴交于点A,B(A在B的左侧),与y轴交于点C.
(1)求b的值;
(2)若将线段BC绕点C顺时针旋转90°得到线段CD,问:点D在该抛物线上吗?请说明理由.
22.(10分)如图,矩形ABCD的对角线AC、BD交于点O,∠AOD=60°,AB=,AE⊥BD于点E,求OE的长.
23.(10分)为了了解班级学生数学课前预习的具体情况,郑老师对本班部分学生进行了为期一个月的跟踪调查,他将调查结果分为四类:A:很好;B:较好;C:一般;D:不达标,并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:
(1)C类女生有 名,D类男生有 名,将上面条形统计图补充完整;
(2)扇形统计图中“课前预习不达标”对应的圆心角度数是 ;
(3)为了共同进步,郑老师想从被调查的A类和D类学生中各随机机抽取一位同学进行“一帮一”互助学习,请用画树状图或列表的方法求出所选两位同学恰好是一男一女同学的概率,
24.(10分)如图,AB、CD为⊙O的直径,弦AE∥CD,连接BE交CD于点F,过点E作直线EP与CD的延长线交于点P,使∠PED=∠C.
(1)求证:PE是⊙O的切线;
(2)求证:DE平分∠BEP;
(3)若⊙O的半径为10,CF=2EF,求BE的长.
25.(12分)如图,在平面直角坐标系xOy中,O为坐标原点,抛物线y=a(x+3)(x﹣1)(a>0)与x轴交于A,B两点(点A在点B的左侧).
(1)求点A与点B的坐标;
(2)若a=,点M是抛物线上一动点,若满足∠MAO不大于45°,求点M的横坐标m的取值范围.
(3)经过点B的直线l:y=kx+b与y轴正半轴交于点C.与抛物线的另一个交点为点D,且CD=4BC.若点P在抛物线对称轴上,点Q在抛物线上,以点B,D,P,Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.
26.(12分)如图,在边长为个单位长度的小正方形组成的网格中,给出了△ABC格点(顶点是网格线的交点).请在网格中画出△ABC以A为位似中心放大到原来的倍的格点△AB1C1,并写出△ABC与△AB1C1,的面积比(△ABC与△AB1C1,在点A的同一侧)
参考答案
一、选择题(每题4分,共48分)
1、D
2、C
3、C
4、A
5、A
6、B
7、B
8、B
9、C
10、D
11、D
12、B
二、填空题(每题4分,共24分)
13、 (1,2)
14、50(1﹣x)2=1.
15、
16、
17、-1
18、(1,0).
三、解答题(共78分)
19、(1)图见解析;;(2)见解析
20、(1);(2)或
21、(1)b=﹣2;(2)点D不在该抛物线上,见解析
22、1
23、(1)3,1;(2)36°;(3)
24、(1)见解析;(2)见解析;(3)BE=1.
25、(1)A(﹣3,0),B(1,0);(2)M(4,7);﹣2≤m≤4;(3)点P的坐标为P(﹣1,4)或(﹣1,).
26、见解析,
相关试卷
这是一份2024年浙江省嘉兴市南湖区北师大南湖附校九年级数学第一学期开学综合测试试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份浙江省嘉兴市南湖区北师大南湖附校2023-2024学年数学九年级第一学期期末达标测试试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,抛物线y=﹣,关于的一元二次方程根的情况是,下列事件中,是必然事件的是等内容,欢迎下载使用。
这是一份2023-2024学年浙江省嘉兴市南湖区北师大南湖附校数学八上期末调研模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,将用科学记数法表示应为,点关于轴对称的点的坐标为,直线y=k1x+b1等内容,欢迎下载使用。