湖南省师范大附属中学2023-2024学年数学九上期末学业质量监测模拟试题含答案
展开学校_______ 年级_______ 姓名_______
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1.如图是二次函数图象的一部分,则关于的不等式的解集是( )
A.B.C.D.
2.如图,AB为⊙O的直径,C,D为⊙O上的两点,若AB=14,BC=1.则∠BDC的度数是( )
A.15°B.30°C.45°D.60°
3.将二次函数y=5x2的图象先向右平移2个单位,再向下平移3个单位,得到的函数图象的解析式为( )
A.y=5(x+2)2+3B.y=5(x﹣2)2+3
C.y=5(x+2)2﹣3D.y=5(x﹣2)2﹣3
4.二次三项式配方的结果是( )
A.B.
C.D.
5.下列一元二次方程中,两实数根之和为3的是( )
A.B.C.D.
6.如图,线段AB两个端点的坐标分别为A(4,4),B(6,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C和D的坐标分别为( )
A.(2,2),(3,2)B.(2,4),(3,1)
C.(2,2),(3,1)D.(3,1),(2,2)
7.已知抛物线y=x2+3向左平移2个单位,那么平移后的抛物线表达式是( )
A.y=(x+2)2+3 B.y=(x﹣2)2+3 C.y=x2+1 D.y=x2+5
8.如图,是坐标原点,菱形顶点的坐标为,顶点在轴的负半轴上,反比例函数的图象经过顶点,则的值为( )
A.B.C.D.
9.对于函数y=,下列说法错误的是( )
A.它的图像分布在第一、三象限B.它的图像与直线y=-x无交点
C.当x>0时,y的值随x的增大而增大D.当x<0时,y的值随x的增大而减小
10.如图,与正六边形的边分别交于点,点为劣弧的中点.若.则点到的距离是( )
A.B.C.D.
11.下列图形都是由同样大小的五角星按一定的规律组成,其中第①个图形一共有2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,…,则第⑦个图形中五角星的个数为( )
A.90B.94C.98D.102
12.在同一时刻,两根长度不等的竿子置于阳光之下,而它们的影长相等,那么这两根竿子的相对位置是( )
A.两根都垂直于地面B.两根平行斜插在地上C.两根不平行D.两根平行倒在地上
二、填空题(每题4分,共24分)
13.如图,某水平地面上建筑物的高度为AB,在点D和点F处分别竖立高是2米的标杆CD和EF,两标杆相隔52米,并且建筑物AB、标杆CD和EF在同一竖直平面内,从标杆CD后退2米到点G处,在G处测得建筑物顶端A和标杆顶端C在同一条直线上;从标杆FE后退4米到点H处,在H处测得建筑物顶端A和标杆顶端E在同一条直线上,则建筑物的高是__________米.
14.一个半径为5cm的球形容器内装有水,若水面所在圆的直径为8cm,则容器内水的高度为_____cm.
15.设、是关于的方程的两个根,则__________.
16.将抛物线y=﹣x2向右平移1个单位,再向上平移2个单位后,得到的抛物线的解析式为______.
17.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,若⊙O的半径是4,sinB=,则线段AC的长为 .
18.阅读对话,解答问题:
分别用、表示小冬从小丽、小兵袋子中抽出的卡片上标有的数字,则在(,)的所有取值中使关于的一元二次方程有实数根的概率为_________.
三、解答题(共78分)
19.(8分)如图一座拱桥的示意图,已知桥洞的拱形是抛物线.当水面宽为12m时,桥洞顶部离水面4m.、
(1)建立平面直角坐标系,并求该抛物线的函数表达式;
(2)若水面上升1m,水面宽度将减少多少?
20.(8分)某广告公司设计一幅周长为16米的矩形广告牌,广告设计费为每平方米2000元.设矩形一边长为x,面积为S平方米.
(1)求S与x之间的函数关系式,并写出自变量x的取值范围;
(2)设计费能达到24000元吗?为什么?
(3)当x是多少米时,设计费最多?最多是多少元?
21.(8分)小红将笔记本电脑水平放置在桌子上,当显示屏与底板所在水平线的夹角为120°时,感觉最舒适(如图1),侧面示意图如图2. 使用时为了散热,她在底板下垫入散热架后,电脑转到位置(如图3),侧面示意图为图4. 已知,于点,.
(1)求的度数.
(2)显示屏的顶部比原来的顶部升高了多少?
(3)如图4,垫入散热架后,要使显示屏与水平线的夹角仍保持120°,则显示屏应绕点'按顺时针方向旋转多少度?并说明理由.
22.(10分)为促进新旧功能转换,提高经济效益,某科技公司近期研发出一种新型高科技设备,每台设备成本价为25万元,经过市场调研发现,该设备的月销售量(台)和销售单价(万元)满足如图所示的一次函数关系.
(1)求月销售量与销售单价的函数关系式;
(2)根据相关规定,此设备的销售单价不得高于35万元,如果该公司想获得130万元的月利润,那么该设备的销售单价应是多少万元?
23.(10分)如图,已知⊙O为Rt△ABC的内切圆,切点分别为D,E,F,且∠C=90°,AB=13,BC=1.
(1)求BF的长;
(2)求⊙O的半径r.
24.(10分)校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载,某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于24米,在l上点D的同侧取点A、B,使∠CAD=30°,∠CBD=60°.
(1)求AB的长(结果保留根号);
(2)已知本路段对校车限速为45千米/小时,若测得某辆校车从A到B用时1.5秒,这辆校车是否超速?说明理由.(参考数据:≈1.7,≈1.4)
25.(12分)定义:无论函数解析式中自变量的字母系数取何值,函数的图象都会过某一个点,这个点称为定点. 例如,在函数中,当时,无论取何值,函数值,所以这个函数的图象过定点.
求解体验
(1)①关于的一次函数的图象过定点_________.
②关于的二次函数的图象过定点_________和_________.
知识应用
(2)若过原点的两条直线、分别与二次函数交于点和点且,试求直线所过的定点.
拓展应用
(3)若直线与拋物线交于、两点,试在拋物线上找一定点,使,求点的坐标.
26.(12分)已知,四边形ABCD中,E是对角线AC上一点,DE=EC,以AE为直径的⊙O与边CD相切于点D,点B在⊙O上,连接OB.
(1)求证:DE=OE;
(2)若CD∥AB,求证:BC是⊙O的切线;
(3)在(2)的条件下,求证:四边形ABCD是菱形.
参考答案
一、选择题(每题4分,共48分)
1、D
2、B
3、D
4、B
5、D
6、C
7、A
8、C
9、C
10、C
11、C
12、C
二、填空题(每题4分,共24分)
13、54
14、2或1
15、1
16、y=﹣(x﹣1)1+1
17、1.
18、.
三、解答题(共78分)
19、 (1)图见解析,抛物线的函数表达式为(注:因建立的平面直角坐标系的不同而不同);(2)
20、(1)S=﹣x2+8x,其中0<x<8;(2)能,理由见解析;(3)当x=4米时,矩形的最大面积为16平方米,设计费最多,最多是32000元.
21、(1);(2);(3)30°,理由见解析
22、(1)与的函数关系式为;(2)该设备的销售单价应是27 万元.
23、(1)BF=3;(2)r=2.
24、 (1) ;(2)此校车在AB路段超速,理由见解析.
25、(1)①;②;(2)直线上的定点为;(3)点为
26、(1)证明见解析;(2)证明见解析;(3)证明见解析.
云南省云南大附属中学2023-2024学年数学九上期末学业质量监测模拟试题含答案: 这是一份云南省云南大附属中学2023-2024学年数学九上期末学业质量监测模拟试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,已知二次函数的解析式为,方程﹣1=的解是等内容,欢迎下载使用。
河南省师范大附属中学2023-2024学年数学九上期末学业水平测试试题含答案: 这是一份河南省师范大附属中学2023-2024学年数学九上期末学业水平测试试题含答案,共7页。试卷主要包含了如图所示的几何体的左视图是,已知抛物线的解析式为y=.,若,则下列等式一定成立的是,已知二次函数,下列事件为必然事件的是等内容,欢迎下载使用。
2023-2024学年湖南省娄底市娄星区数学九上期末学业质量监测模拟试题含答案: 这是一份2023-2024学年湖南省娄底市娄星区数学九上期末学业质量监测模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,已知二次函数,下列说法正确的是,下列图形中一定是相似形的是等内容,欢迎下载使用。