甘肃省庆阳市名校2023-2024学年数学九年级第一学期期末监测试题含答案
展开
这是一份甘肃省庆阳市名校2023-2024学年数学九年级第一学期期末监测试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,的值等于,在四张完全相同的卡片上等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每题4分,共48分)
1.将抛物线向右平移2个单位, 则所得抛物线的表达式为( )
A.B.
C.D.
2.二次函数的部分图象如图所示,有以下结论:①;②;③;④,其中错误结论的个数是( )
A.1B.2C.3D.4
3.如图,在矩形ABCD中,AD=2AB.将矩形ABCD对折,得到折痕MN,沿着CM折叠,点D的对应点为E,ME与BC的交点为F;再沿着MP折叠,使得AM与EM重合,折痕为MP,此时点B的对应点为G.下列结论:①△CMP是直角三角形;②AB=BP;③PN=PG;④PM=PF;⑤若连接PE,则△PEG∽△CMD.其中正确的个数为( )
A.5个B.4个C.3个D.2个
4.如图,在△ABC中,BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,连接PM、PN、MN,则下列结论:①PM=PN;②;③若∠ABC=60°,则△PMN为等边三角形;④若∠ABC=45°,则BN=PC.其中正确的是( )
A.①②③B.①②④C.①③④D.②③④
5.某河堤横断面如图所示,堤高米,迎水坡的坡比是(坡比是坡面的铅直高度与水平宽度之比),则的长是( )
A.米B.20米C.米D.30米
6.的值等于( )
A.B.C.1D.
7.若气象部门预报明天下雨的概率是,下列说法正确的是( )
A.明天一定会下雨B.明天一定不会下雨
C.明天下雨的可能性较大D.明天下雨的可能性较小
8.如图,为的直径,弦于点,,,则的半径为( )
A.5B.8C.3D.10
9.下列各组图形中,两个图形不一定是相似形的是( )
A.两个等边三角形B.有一个角是的两个等腰三角形
C.两个矩形D.两个正方形
10.在四张完全相同的卡片上.分别画有等腰三角形、矩形、菱形、圆,现从中随机抽取一张,卡片上的图形恰好是中心对称图形的概率是( )
A.B.C.D.1
11.如图,四边形内接于, 为延长线上一点,若,则的度数为( )
A.B.C.D.
12.如图,已知点A是双曲线y=在第一象限的分支上的一个动点,连接AO并延长交另一分支于点B,过点A作y轴的垂线,过点B作x轴的垂线,两垂线交于点C,随着点A的运动,点C的位置也随之变化.设点C的坐标为(m,n),则m,n满足的关系式为( )
A.n=-2mB.n=-C.n=-4mD.n=-
二、填空题(每题4分,共24分)
13.点A(﹣3,m)和点B(n,2)关于原点对称,则m+n=_____.
14.已知函数,如果,那么___________.
15.如图,矩形中,,,是边上的一点,且,点在矩形所在的平面中,且,则的最大值是_________.
16.在Rt△ABC中,∠C=90,AB=4,BC=3,则sinA的值是______________.
17.一元二次方程x2﹣3x+2=0的两根为x1,x2,则x1+x2﹣x1x2=______.
18.抛物线y=(x-2)2+3的顶点坐标是______.
三、解答题(共78分)
19.(8分)如图,AB为⊙O的直径,弦CD⊥AB,垂足为点E,CF⊥AF,且CF=CE
(1)求证:CF是⊙O的切线;
(2)若sin∠BAC=,求的值.
20.(8分)已知二次函数(m 为常数).
(1)证明:不论 m 为何值,该函数的图像与 x 轴总有两个公共点;
(2)当 m 的值改变时,该函数的图像与 x 轴两个公共点之间的距离是否改变?若不变, 请求出距离;若改变,请说明理由.
21.(8分)某文物古迹遗址每周都吸引大量中外游客前来参观,如果游客过多,对文物古迹会产生不良影响,但同时考虑到文物的修缮和保存费用的问题,还要保证有一定的门票收入,因此遗址的管理部门采取了升、降门票价格的方法来控制参观人数.在实施过程中发现:每周参观人数y(人)与票价x(元)之间恰好构成一次函数关系:y=﹣500x+1.在这样的情况下,如果要确保每周有40000元的门票收入,那么门票价格应定为多少元?
22.(10分)在中, , 记,点为射线上的动点,连接,将射线绕点顺时针旋转角后得到射线,过点作的垂线,与射线交于点,点关于点的对称点为,连接.
(1)当为等边三角形时,
① 依题意补全图1;
②的长为________;
(2)如图2,当,且时, 求证:;
(3)设, 当时,直接写出的长. (用含的代数式表示)
23.(10分)阅读下面材料,完成(1)-(3)题.
数学课上,老师出示了这样一道题:
如图,△ABC中,D为BC中点,且AD=AC,M为AD中点,连结CM并延长交AB于N.
探究线段AN、MN、CN之间的数量关系,并证明.
同学们经过思考后,交流了自已的想法:
小明:“通过观察和度量,发现线段AN、AB之间存在某种数量关系.”
小强:“通过倍长不同的中线,可以得到不同的结论,但都是正确的,大家就大胆的探究吧.”
小伟:“通过构造、证明相似三角形、全等三角形,就可以将问题解决.”
老师: “若其他条件不变,设AB=a,则可以用含a的式子表示出线段CM的长.”
(1)探究线段AN、AB之间的数量关系,并证明;
(2)探究线段AN、MN、CN之间的数量关系,并证明;
(3)设AB=a,求线段CM的长(用含a的式子表示).
24.(10分)如图,在平面直角坐标系中,己知二次函数的图像与y轴交于点B(0, 4),与x轴交于点A(-1,0)和点D.
(1)求二次函数的解析式;
(2)求抛物线的顶点和点D的坐标;
(3)在抛物线上是否存在点P,使得△BOP的面积等于?如果存在,请求出点P的坐标?如果不存在,请说明理由.
25.(12分)某校初二年级模拟开展“中国诗词大赛”比赛,对全年级同学成绩进行统计后分为“优秀”、“良好”、“一般”、“较差”四个等级,并根据成绩绘制成如下两幅不完整的统计图,请结合统计图中的信息,回答下列问题:
(1)扇形统计图中“优秀”所对应的扇形的圆心角为 度,并将条形统计图补充完整.
(2)此次比赛有三名同学得满分,分别是甲、乙、丙,现从这三名同学中挑选两名同学参加学校举行的“中国诗词大赛”比赛,请用列表法或画树状图法,求出选中的两名同学恰好是甲、丙的概率.
26.(12分)如图有A、B两个大小均匀的转盘,其中A转盘被分成3等份,B转盘被分成4等份,并在每一份内标上数字.小明和小红同时各转动其中一个转盘,转盘停止后(当指针指在边界线时视为无效,重转),若将A转盘指针指向的数字记作一次函数表达式中的k,将B转盘指针指向的数字记作一次函数表达式中的b.
(1)请用列表或画树状图的方法写出所有的可能;
(2)求一次函数y=kx+b的图象经过一、二、四象限的概率.
参考答案
一、选择题(每题4分,共48分)
1、D
2、A
3、B
4、B
5、A
6、A
7、C
8、A
9、C
10、C
11、D
12、B
二、填空题(每题4分,共24分)
13、1
14、1
15、5+.
16、
17、1
18、(2,3)
三、解答题(共78分)
19、(1)见解析 (2)
20、(1)详见解析;(2)图像与轴两个公共点之间的距离为
21、门票价格应是20元/人.
22、(1)①见解析,②. (2)见解析;(3).
23、(1)(2)或,证明见解析(3)
24、(1);(2)D的坐标为(3,0),顶点坐标为(1,);(3)满足条件的点P有两个,坐标分别为P1(,)、P2().
25、(1)72,图详见解析;(2).
26、(1)答案见解析;(2).
相关试卷
这是一份甘肃省庆阳市庙渠初级中学2023-2024学年九上数学期末监测模拟试题含答案,共8页。
这是一份2023-2024学年甘肃省庆阳市数学九年级第一学期期末学业质量监测模拟试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,已知,则代数式的值为,按下面的程序计算等内容,欢迎下载使用。
这是一份2023-2024学年甘肃省庆阳市名校数学九上期末质量跟踪监视模拟试题含答案,共9页。试卷主要包含了考生必须保证答题卡的整洁,函数中,自变量的取值范围是等内容,欢迎下载使用。