湖南长沙市芙蓉区铁路一中学2023-2024学年数学九上期末学业质量监测模拟试题含答案
展开学校_______ 年级_______ 姓名_______
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每题4分,共48分)
1.对于非零实数,规定,若,则的值为
A.B.C.D.
2.某校科技实践社团制作实践设备,小明的操作过程如下:①小明取出老师提供的圆形细铁环,先通过在圆一章中学到的知识找到圆心O,再任意找出圆O的一条直径标记为AB(如图1),测量出AB=4分米;②将圆环进行翻折使点B落在圆心O的位置,翻折部分的圆环和未翻折的圆环产生交点分别标记为C、D(如图2);③用一细橡胶棒连接C、D两点(如图3);④计算出橡胶棒CD的长度.
小明计算橡胶棒CD的长度为( )
A.2分米B.2分米C.3分米D.3分米
3.用配方法解方程,变形后的结果正确的是( )
A.B.C.D.
4.某校九年级(1)班在举行元旦联欢会时,班长觉得快要毕业了,决定临时增加一个节目:班里面任意两名同学都要握手一次.小张同学统计了一下,全班同学共握手了465次.你知道九年级(1)班有多少名同学吗?设九年级(1)班有x名同学,根据题意列出的方程是( )
A.=465B.=465C.x(x﹣1)=465D.x(x+1)=465
5.如图,▱ABCD的对角线相交于点O,且,过点O作交BC于点E,若的周长为10,则▱ABCD的周长为
A.14B.16C.20D.18
6.一元二次方程x2﹣3x=0的两个根是( )
A.x1=0,x2=﹣3B.x1=0,x2=3C.x1=1,x2=3D.x1=1,x2=﹣3
7.下列各坐标表示的点在反比例函数图象上的是( )
A.B.C.D.
8.在皮影戏的表演中,要使银幕上的投影放大,下列做法中正确的是( )
A.把投影灯向银幕的相反方向移动B.把剪影向投影灯方向移动
C.把剪影向银幕方向移动D.把银幕向投影灯方向移动
9.某盏路灯照射的空间可以看成如图所示的圆锥,它的高米,底面半径米,则圆锥的侧面积是多少平方米(结果保留). ( )
A.B.C.D.
10.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tan∠ABC的值为( )
A.B.C.D.1
11.如图,∠AOB是放置在正方形网格中的一个角,则tan∠AOB( )
A.B.C.1D.
12.如图,要测量小河两岸相对两点、宽度,可以在小河边的垂线上取一点,则得,,则小河的宽等于( )
A.B.C.D.
二、填空题(每题4分,共24分)
13.如图,在中,,,.将绕点逆时针旋转,使点落在边上的处,点落在处,则,两点之间的距离为__________;
14.如图,过y轴上任意一点P,作x轴的平行线,分别与反比例函数和的图象交于点A和点B,若C为x轴上任意一点,连接AC,BC,则的面积是________.
15.在函数y=+(x﹣5)﹣1中,自变量x的取值范围是_____.
16.如图在中,,,以点为圆心,的长为半径作弧,交于点,为的中点,以点为圆心,长为半径作弧,交于点,若,则阴影部分的面积为________.
17.如图,C为半圆内一点,O为圆心,直径AB长为1 cm,∠BOC=60°,∠BCO=90°,将△BOC绕圆心O逆时针旋转至△B′OC′,点C′在OA上,则边BC扫过区域(图中阴影部分)的面积为_________cm1.
18.如图,直线y=x﹣2与x轴、y轴分别交于点A和点B,点C在直线AB上,且点C的纵坐标为﹣1,点D在反比例函数y=的图象上,CD平行于y轴,S△OCD=,则k的值为________.
三、解答题(共78分)
19.(8分)如图,已知△ABC内接于⊙O,且AB=AC,直径AD交BC于点E,F是OE上的一点,使CF∥BD.
(1)求证:BE=CE;
(2)若BC=8,AD=10,求四边形BFCD的面积.
20.(8分)在四边形ABCD中,对角线AC、BD相交于点O,设锐角∠DOC=α,将△DOC按逆时针方向旋转得到△D′OC′(0°<旋转角<90°)连接AC′、BD′,AC′与BD′相交于点M.
(1)当四边形ABCD是矩形时,如图1,请猜想AC′与BD′的数量关系以及∠AMB与α的大小关系,并证明你的猜想;
(2)当四边形ABCD是平行四边形时,如图2,已知AC=kBD,请猜想此时AC′与BD′的数量关系以及∠AMB与α的大小关系,并证明你的猜想;
(3)当四边形ABCD是等腰梯形时,如图3,AD∥BC,此时(1)AC′与BD′的数量关系是否成立?∠AMB与α的大小关系是否成立?不必证明,直接写出结论.
21.(8分)如图,△ABC是⊙O的内接三角形,BC=4,∠A=30°,求⊙O的直径.
22.(10分)小红将笔记本电脑水平放置在桌子上,当显示屏与底板所在水平线的夹角为120°时,感觉最舒适(如图1),侧面示意图如图2. 使用时为了散热,她在底板下垫入散热架后,电脑转到位置(如图3),侧面示意图为图4. 已知,于点,.
(1)求的度数.
(2)显示屏的顶部比原来的顶部升高了多少?
(3)如图4,垫入散热架后,要使显示屏与水平线的夹角仍保持120°,则显示屏应绕点'按顺时针方向旋转多少度?并说明理由.
23.(10分)抛物线过点(0,-5)和(2,1).
(1)求b,c的值;
(2)当x为何值时,y有最大值?
24.(10分)用适当的方法解下列方程:
(1)x2-6x+1=0
(2)x2-4=2x+4
25.(12分)如图,二次函数的图象经过坐标原点,与轴的另一个交点为A(-2,0).
(1)求二次函数的解析式
(2)在抛物线上是否存在一点P,使△AOP的面积为3,若存在请求出点P的坐标,若不存在,请说明理由.
26.(12分)如图,已知△ABC与△A′B′C′关于点O成中心对称,点A的对称点为点A′,请你用尺规作图的方法,找出对称中心O,并作出△A′B′C′.(要求:尺规作图,保留作图痕迹,不写作法).
参考答案
一、选择题(每题4分,共48分)
1、A
2、B
3、D
4、A
5、C
6、B
7、B
8、B
9、A
10、B
11、C
12、C
二、填空题(每题4分,共24分)
13、
14、1
15、x≥4且x≠1
16、
17、
18、1
三、解答题(共78分)
19、(1)见解析;(2)四边形BFCD的面积为1.
20、(1)BD′=AC′,∠AMB=α,见解析;(2)AC′=kBD′,∠AMB=α,见解析;(3)AC′=BD′成立,∠AMB=α不成立
21、1
22、(1);(2);(3)30°,理由见解析
23、(1)b, c的值分别为5, -5;(2)当时有最大值
24、(1)x1=3+2,x2=3-2 ;(2)x1=-2,x2=4
25、(4)y=-x3-3x;(3)(4,-4),(4,-4).
26、见解析
湖南省长沙市广益实验中学2023-2024学年九上数学期末学业质量监测模拟试题含答案: 这是一份湖南省长沙市广益实验中学2023-2024学年九上数学期末学业质量监测模拟试题含答案,共8页。试卷主要包含了抛物线与坐标轴的交点个数是,二次函数 y=,已知反比例函数y=等内容,欢迎下载使用。
湖南省师范大附属中学2023-2024学年数学九上期末学业质量监测模拟试题含答案: 这是一份湖南省师范大附属中学2023-2024学年数学九上期末学业质量监测模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,二次三项式配方的结果是,对于函数y=,下列说法错误的是等内容,欢迎下载使用。
2023-2024学年湖南长沙市广益中学数学九上期末监测模拟试题含答案: 这是一份2023-2024学年湖南长沙市广益中学数学九上期末监测模拟试题含答案,共9页。试卷主要包含了已知点 P1,如图,△∽△,若,,,则的长是等内容,欢迎下载使用。