甘肃省庆阳市镇原县2023-2024学年数学九上期末学业水平测试试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每题4分,共48分)
1.关于x的方程3x2﹣2x+1=0的根的情况是( )
A.有两个相等的实数根 B.有两个不相等的实数根
C.没有实数根 D.不能确定
2.关于x的一元二次方程有两个实数根,则k的取值范围在数轴上可以表示为( )
A.B.
C.D.
3.如图,该几何体的主视图是( )
A.B.C.D.
4.若x=2是关于x的一元二次方程x2﹣2a=0的一个根,则a的值为( )
A.3B.2C.4D.5
5.下列事件中是必然事件是( )
A.明天太阳从西边升起
B.篮球队员在罚球线投篮一次,未投中
C.实心铁球投入水中会沉入水底
D.抛出一枚硬币,落地后正面向上
6.已知下列命题:①等弧所对的圆心角相等;②90°的圆周角所对的弦是直径;③关于x的一元二次方程有两个不相等的实数根,则ac< 0;④若二次函数y= 的图象上有两点(-1,y1)、(2,y2),则>;其中真命题的个数是( )
A.1个B.2个C.3个D.4个
7.如图,在大小为的正方形网格中,是相似三角形的是( )
A.甲和乙B.乙和丙C.甲和丙D.乙和丁
8.下列各式与是同类二次根式的是( )
A.B.C.D.
9.定义:如果一个一元二次方程的两个实数根的比值与另一个一元二次方程的两个实数根的比值相等,我们称这两个方程为“相似方程”,例如,的实数根是3或6,的实数根是1或2,,则一元二次方程与为相似方程.下列各组方程不是相似方程的是( )
A.与B.与
C.与D.与
10.二次函数的顶点坐标是( )
A.B.C.D.
11.如图所示的两个三角形(B、F、C、E四点共线)是中心对称图形,则对称中心是( )
A.点CB.点D
C.线段BC的中点D.线段FC的中点
12.已知反比例函数的解析式为,则的取值范围是
A.B.C.D.
二、填空题(每题4分,共24分)
13.二次函数的图象与轴交于两点(点在点的左侧),与轴交于点,作直线,将直线下方的二次函数图象沿直线向上翻折,与其它剩余部分组成一个组合图象,若线段与组合图象有两个交点,则的取值范围为_____.
14.已知方程x2+mx+3=0的一个根是1,则它的另一个根是_____,m的值是______.
15.在一个不透明的袋子中,装有1个红球和2个白球,这些球除颜色外其余都相同。搅匀后从中随机一次摸出两个球,则摸到的两个球都是白球的概率是____.
16.如图,中,已知,,点在边上,.把线段绕着点逆时针旋转()度后,如果点恰好落在的边上,那么__________.
17.在反比例函数y=的图象上有两点A(x1,y1),B(x2,y2),当x1<0<x2时,有y1<y2,则m的取值范围是_____.
18.已知某种礼炮的升空高度h(m)与飞行时间t(s)的关系是h=+20t+1,若此礼炮在升空到最高处时引爆,到引爆需要的时间为_____s.
三、解答题(共78分)
19.(8分)方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,且三个顶点的坐标分别为A(1,﹣4),B(5,﹣4),C(4,﹣1).
(1)画出△ABC关于原点O对称的△A1B1C1,并写出点C1 的坐标;
(1)作出△ABC绕着点A逆时针方向旋转90°后得到的△AB1C1.
20.(8分)某班数学兴趣小组在学习二次根式时进行了如下题目的探索研究:
(1)填空:;;
(2)观察第(1)题的计算结果回答:一定等于 ;
(3)根据(1)、(2)的计算结果进行分析总结的规律,计算:
21.(8分)某校喜迎中华人民共和国成立70周年,将举行以“歌唱祖国”为主题的歌咏比赛,需要在文具店购买国旗图案贴纸和小红旗发给学生做演出道具.已知毎袋贴纸有50张,毎袋小红旗有20面,贴纸和小红旗需整袋购买,每袋贴纸价格比每袋小红旗价格少5元,用150元购买贴纸所得袋数与用200元购买小红旗所得袋数相同.
(1)求每袋国旗图案贴纸和每袋小红旗的价格各是多少元?
(2)如果给每位演出学生分发国旗图案贴纸2张,小红旗1面.设购买国旗图案贴纸袋(为正整数),则购买小红旗多少袋能恰好配套?请用含的代数式表示.
(3)在文具店累计购物超过800元后,超出800元的部分可享受8折优惠.学校按(2)中的配套方案购买,共支付元,求关于的函数关系式.现全校有1200名学生参加演出,需要购买国旗图案贴纸和小红旗各多少袋?所需总费用多少元?
22.(10分)有一个人患了流感,经过两轮传染后共有196个人患了流感,每轮传染中平均一个人传染了几个人?
23.(10分)如图,AB与⊙O相切于点B,AO及AO的延长线分别交⊙O于D、C两点,若∠A=40°,求∠C的度数.
24.(10分)如图,一位同学想利用树影测量树高,他在某一时刻测得高为的竹竿影长为,但当他马上测量树影时,因树靠近一幢建筑物,影子不全落在地面上,有一部分影子在墙上,他先测得留在墙上的影高,又测得地面部分的影长,则他测得的树高应为多少米?
25.(12分)总公司将一批衬衫由甲、乙两家分店共同销售,因地段不同,甲店一天可售出20件,每件盈利40元;乙店一天可售出32件,每件盈利30元.经调查发现,每件衬杉每降价1元,甲、乙两家店一天都可多售出2件.设甲店每件衬衫降价a元时,一天可盈利y1元,乙店每件衬衫降价b元时,一天可盈利y2元.
(1)当a=5时,求y1的值.
(2)求y2关于b的函数表达式.
(3)若总公司规定两家分店下降的价格必须相同,请求出每件衬衫下降多少元时,两家分店一天的盈利和最大,最大是多少元?
26.(12分)材料1:如图1,昌平南环大桥是经典的悬索桥,当今大跨度桥梁大多采用此种结构.此种桥梁各结构的名称如图2所示,其建造原理是在两边高大的桥塔之间,悬挂着主索,再以相应的间隔,从主索上设置竖直的吊索,与桥面垂直,并连接桥面承接桥面的重量,主索几何形态近似符合抛物线.
图1
图2
材料2:如图3,某一同类型悬索桥,两桥塔AD=BC=10 m,间距AB为32 m,桥面AB水平,主索最低点为点P,点P距离桥面为2 m;
图3
为了进行研究,甲、乙、丙三位同学分别以不同方式建立了平面直角坐标系,如下图:
甲同学:以DC中点为原点,DC所在直线为x轴,建立平面直角坐标系;
乙同学:以AB中点为原点,AB所在直线为x轴,建立平面直角坐标系;
丙同学:以点P为原点,平行于AB的直线为x轴,建立平面直角坐标系.
(1)请你选用其中一位同学建立的平面直角坐标系,写出此种情况下点C的坐标,并求出主索抛物线的表达式;
(2)距离点P水平距离为4 m和8 m处的吊索共四条需要更换,则四根吊索总长度为多少米?
参考答案
一、选择题(每题4分,共48分)
1、C
2、B
3、D
4、A
5、C
6、B
7、C
8、A
9、C
10、B
11、D
12、C
二、填空题(每题4分,共24分)
13、或
14、3 -4
15、.
16、或
17、m>﹣
18、1
三、解答题(共78分)
19、(1)图详见解析,C1(4,1);(1)图详见解析
20、(1)3,1;(2);(3).
21、(1)每袋国旗图案贴纸为15元,每袋小红旗为20元;(2)购买小红旗袋恰好配套;(3)需要购买国旗图案贴纸和小红旗各48,60袋,总费用元.
22、每轮传染中平均一个人传染了13个人.
23、∠C =25°.
24、树高为米.
25、(1)a=5时,y1的值是1050;(2)y2=﹣2b2+28b+960;(3)每件衬衫下降11元时,两家分店一天的盈利和最大,最大是2244元.
26、(1)甲,C(16,0),主索抛物线的表达式为;(2)四根吊索的总长度为13m;
2023-2024学年甘肃省武威第九中学数学九上期末学业水平测试试题含答案: 这是一份2023-2024学年甘肃省武威第九中学数学九上期末学业水平测试试题含答案,共9页。试卷主要包含了下列实数中,介于与之间的是,下列说法正确的是,已知a≠0,下列计算正确的是等内容,欢迎下载使用。
2023-2024学年甘肃省庆阳市镇原县九上数学期末预测试题含答案: 这是一份2023-2024学年甘肃省庆阳市镇原县九上数学期末预测试题含答案,共8页。
2023-2024学年甘肃省庆阳镇原县联考数学九上期末达标检测试题含答案: 这是一份2023-2024学年甘肃省庆阳镇原县联考数学九上期末达标检测试题含答案,共9页。