福建省厦门市五中学2023-2024学年九年级数学第一学期期末达标检测模拟试题含答案
展开学校_______ 年级_______ 姓名_______
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每题4分,共48分)
1.已知关于x的一元二次方程有两个不相等的实数根,则k的取值范围是( )
A.k>-3B.k≥-3C.k≥0D.k≥1
2.在平面直角坐标系中,点E(﹣4,2),点F(﹣1,﹣1),以点O为位似中心,按比例1:2把△EFO缩小,则点E的对应点E的坐标为( )
A.(2,﹣1)或(﹣2,1)B.(8,﹣4)或(﹣8,4)C.(2,﹣1)D.(8,﹣4)
3.如图,在平面直角坐标系中,梯形OACB的顶点O是坐标原点,OA边在y轴正半轴上,OB边在x轴正半轴上,且OA∥BC,双曲线y=(x>0)经过AC边的中点,若S梯形OACB=4,则双曲线y=的k值为( )
A.5B.4C.3D.2
4.已知圆锥的底面半径为5,母线长为13,则这个圆锥的全面积是( )
A.B.C.D.
5.如图,中,将绕点逆时针旋转后得到,点经过的路径为则图中涂色部分的面积为( )
A.B.C.D.
6.如图,将n个边长都为2的正方形按如图所示摆放,点A1,A2,…An分别是正方形的中心,则这n个正方形重叠部分的面积之和是( )
A.nB.n-1C.()n-1D.n
7.中,,,,的值为( )
A.B.C.D.2
8.如图,点的坐标是,是等边角形,点在第一象限,若反比例函数的图象经过点,则的值是( )
A.B.C.D.
9.如图,已知直线,直线、与、、分别交于点、、和、、,,,,( )
A.7B.7.5C.8D.4.5
10.将抛物线向右平移个单位后,得到的抛物线的解析式是( )
A.B.C.D.
11.如图,点是内一点,,,点、、、分别是、、、的中点,则四边形的周长是( )
A.24B.21C.18D.14
12.如图,在中,,,平分,是的中点,若,则的长为( )
A.4B.C.D.
二、填空题(每题4分,共24分)
13.如图,在平面直角坐标系中,等腰Rt△OA1B1的斜边OA1=2,且OA1在x轴的正半轴上,点B1落在第一象限内.将Rt△OA1B1绕原点O逆时针旋转45°,得到Rt△OA2B2,再将Rt△OA2B2绕原点O逆时针旋转45°,又得到Rt△OA3B3,……,依此规律继续旋转,得到Rt△OA2019B2019,则点B2019的坐标为_____.
14.以原点O为位似中心,作△ABC的位似图形△A′B′C′,△ABC与△A′B′C′相似比为,若点C的坐标为(4,1),点C的对应点为C′,则点C′的坐标为_____.
15.如图,点是反比例函数的图象上一点,直线过点与轴交于点,与轴交于点.过点做轴于点,连接,若的面积为,则的面积为_______.
16.如图,点A在函数y=(x>0)的图像上,点B在x轴正半轴上,△OAB是边长为2的等边三角形,则k的值为______.
17.方程2x2﹣6=0的解是_____.
18.如图,AB是⊙O的直径,点C在AB 的延长线上, CD与⊙O相切于点D,若∠CDA=122°,则∠C=_______.
三、解答题(共78分)
19.(8分)一玩具厂去年生产某种玩具,成本为元/件,出厂价为元/件,年销售量为万件.今年计划通过适当增加成本来提高产品档次,以拓展市场.若今年这种玩具每件的成本比去年成本增加倍,今年这种玩具每件的出厂价比去年出厂价相应提高倍,则预计今年年销售量将比去年年销售量增加倍(本题中).
用含的代数式表示,今年生产的这种玩具每件的成本为________元,今年生产的这种玩具每件的出厂价为________元.
求今年这种玩具的每件利润元与之间的函数关系式.
设今年这种玩具的年销售利润为万元,求当为何值时,今年的年销售利润最大?最大年销售利润是多少万元?
注:年销售利润(每件玩具的出厂价-每件玩具的成本)年销售量.
20.(8分)如图所示的直面直角坐标系中,的三个顶点坐标分别为,,.
(1)将绕原点逆时针旋转画出旋转后的;
(2)求出点到点所走过的路径的长.
21.(8分)如图,已知AB是⊙O的直径,点C在⊙O上,点P是AB延长线上一点,∠BCP=∠A.
(1)求证:直线PC是⊙O的切线;
(2)若CA=CP,⊙O的半径为2,求CP的长.
22.(10分)用适当的方法解下列一元二次方程:
(1)x(2x﹣5)=4x﹣1.
(2)x2+5x﹣4=2.
23.(10分)如图,四边形ABCD为圆内接四边形,对角线AC、BD交于点E,延长DA、CB交于点F.
(1)求证:△FBD∽△FAC;
(2)如果BD平分∠ADC,BD=5,BC=2,求DE的长;
(3)如果∠CAD=60°,DC=DE,求证:AE=AF.
24.(10分)一个不透明的口袋中装有4张卡片,卡片上分别标有数字1、﹣2、3、﹣4,这些卡片除数字外都相同.王兴从口袋中随机抽取一张卡片,钟华从剩余的三张卡片中随机抽取一张,求两张卡片上数字之积.
(1)请你用画树状图或列表的方法,列出两人抽到的数字之积所有可能的结果.
(2)求两人抽到的数字之积为正数的概率.
25.(12分)某种蔬菜的售价(元)与销售月份之间的关系如图所示,成本(元)与销售月份之间的关系如图所示.(图的图象是线段,图的图象是抛物线)
(1)已知6月份这种蔬菜的成本最低,此时出售每千克的利润是多少元?(利润=售价成本)
(2)设每千克该蔬菜销售利润为,请列出与之间的函数关系式,并求出哪个月出售这种蔬菜每千克的利润最大,最大利润是多少?
(3)已知市场部销售该种蔬菜4、5两个月的总利润为22万元,且5月份的销售量比4月份的销售量多2万千克.4、5两个月的销售量分别是多少万千克?
26.(12分)如图,已知二次函数的图象经过点,.
(1)求的值;
(2)直接写出不等式的解.
参考答案
一、选择题(每题4分,共48分)
1、D
2、A
3、D
4、B
5、A
6、B
7、C
8、D
9、D
10、B
11、B
12、B
二、填空题(每题4分,共24分)
13、(﹣1,1)
14、或
15、
16、
17、x1=,x2=﹣
18、26°
三、解答题(共78分)
19、10+7x 12+6x
20、(1)见解析;(2)
21、(1)见解析;(2)2
22、(1)x=2.5或x=2;(2)x=.
23、(1)见解析;(2);(3)见解析
24、(1)详见解析;(2).
25、(1)6月份出售这种蔬菜每千克的利润是2元;(2)P=,5月份出售这种蔬菜,每千克的收益最大为元;(3)4月份的销售量为40000千克,5月份的销售量为60000千克.
26、(1),;(2)
2023-2024学年福建省厦门市海沧区鳌冠学校数学九上期末达标检测模拟试题含答案: 这是一份2023-2024学年福建省厦门市海沧区鳌冠学校数学九上期末达标检测模拟试题含答案,共10页。试卷主要包含了答题时请按要求用笔,如图, 在同一坐标系中等内容,欢迎下载使用。
2023-2024学年福建省厦门市四校数学九上期末达标检测模拟试题含答案: 这是一份2023-2024学年福建省厦门市四校数学九上期末达标检测模拟试题含答案,共7页。
福建省厦门市第一中学2023-2024学年九上数学期末复习检测模拟试题含答案: 这是一份福建省厦门市第一中学2023-2024学年九上数学期末复习检测模拟试题含答案,共7页。