贵州省黔西南州望谟六中学2023-2024学年数学九年级第一学期期末监测模拟试题含答案
展开
这是一份贵州省黔西南州望谟六中学2023-2024学年数学九年级第一学期期末监测模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1.在中, ,则( ).
A.B.C.D.
2.如图,点A1的坐标为(1,0),A2在y轴的正半轴上,且∠A1A2O=30°,过点A2作A2A3⊥A1A2,垂足为A2,交x轴于点A3,过点A3作A3A4⊥A2A3,垂足为A3,交y轴于点A4;过点A4作A4A5⊥A3A4,垂足为A4,交x轴于点A5;过点A5作A5A6⊥A4A5,垂足为A5,交y轴于点A6;…按此规律进行下去,则点A2017的横坐标为( )
A.B.0C.D.
3.下表是二次函数y=ax2+bx+c的部分x,y的对应值:
可以推断m的值为( )
A.﹣2B.0C.D.2
4.已知关于x的一元二次方程x2+2x﹣a=0有两个相等的实数根,则a的值是( )
A.1B.﹣1C. D.
5.如图1,一个扇形纸片的圆心角为90°,半径为1.如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为( )
A.B.C.D.
6.如图,各正方形的边长均为1,则四个阴影三角形中,一定相似的一对是( )
A.①②B.①③C.②③D.③④
7.如果关于x的一元二次方程有实数根,那么m的取值范围是( )
A.B.C.D.
8.如图,圆锥底面半径为rcm,母线长为5cm,其侧面展开图是圆心角为216°的扇形,则r的值为( )
A.3B.4C.5D.6
9.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=-1,x2=3;③3a+c>0;④当y>0时,x的取值范围是-1≤x<3;⑤当x<0时,y随x增大而增大.其中结论正确的个数是( )
A.4个B.3个C.2个D.1个
10.已知点P(-1,4)在反比例函数的图象上,则k的值是( )
A.B.C.4D.-4
11.若,则的值是( )
A.B.C.D.0
12.抛物线y=﹣x2+1向右平移2个单位长度,再向下平移3个长度单位得到的抛物线解析式是( )
A.y=﹣(x﹣2)2+4B.y=﹣(x﹣2)2﹣2
C.y=﹣(x+2)2+4D.y=﹣(x+2)2﹣2
二、填空题(每题4分,共24分)
13.如图,面积为6的矩形的顶点在反比例函数的图像上,则__________.
14.某班主任将其班上学生上学方式(乘公汽、骑自行车、坐小轿车、步行共4种)的调查结果绘制成下图所示的不完整的统计图,已知乘坐公汽上学的有12人,骑自行车上学的有24人,乘家长小轿车上学的有4人,则步行上学的学生人数在扇形统计图对应的扇形所占的圆心角的度数为_____.
15.如图,将绕点顺时针旋转得到,点的对应点是点,直线与直线所夹的锐角是_______.
16.一天早上,王霞从家出发步行上学,出发6分钟后王霞想起数学作业没有带,王霞立即打电话叫爸爸骑自行车把作业送来(接打电话和爸爸出门的时间忽略不计),同时王霞把速度降低到前面的一半.爸爸骑自行车追上王霞后立即掉头以原速赶往位于家的另一边的单位上班,王霞拿到作业后立即改为慢跑上学,慢跑的速度是最开始步行速度的2倍,最后王霞比爸爸早10分钟到达目的地.如图反映了王霞与爸爸之间的距离(米)与王霞出发后时间(分钟)之间的关系,则王霞的家距离学校有__________米.
17.如图,已知⊙O的半径为1,AB,AC是⊙O的两条弦,且AB=AC,延长BO交AC于点D,连接OA,OC,若AD2=AB•DC,则OD=__.
18.如图所示,在平面直角坐标系中,A(4,0),B(0,2),AC由AB绕点A顺时针旋转90°而得,则AC所在直线的解析式是_____.
三、解答题(共78分)
19.(8分)已知关于的方程.
(1)求证:无论为何值,该方程都有两个不相等的实数根;
(2)若该方程的一个根为-1,则另一个根为 .
20.(8分)下面是一位同学做的一道作图题:
已知线段、、(如图所示),求作线段,使.
他的作法如下:
1.以下为端点画射线,.
2.在上依次截取,.
3.在上截取.
4.联结,过点作,交于点.
所以:线段______就是所求的线段.
(1)试将结论补完整:线段______就是所求的线段.
(2)这位同学作图的依据是______;
(3)如果,,,试用向量表示向量.
21.(8分)已知正比例函数y=x的图象与反比例函数y=(k为常数,且k≠0)的图象有一个交点的纵坐标是1.
(Ⅰ)当x=4时,求反比例函数y=的值;
(Ⅱ)当﹣1<x<﹣1时,求反比例函数y=的取值范围.
22.(10分)如图,点、、都在半径为的上,过点作交的延长线于点,连接,已知.
(1)求证:是的切线;
(2)求图中阴影部分的面积.
23.(10分)如图,四边形中的三个顶点在⊙上,是优弧上的一个动点(不与点、重合).
(1)当圆心在内部,∠ABO+∠ADO=70°时,求∠BOD的度数;
(2)当点A在优弧BD上运动,四边形为平行四边形时,探究与的数量关系.
24.(10分)己知抛物线与轴交于两点,与轴交于点,顶点为.
(1)求抛物线的表达式及点D的坐标;
(2)判断的形状.
25.(12分)2018年非洲猪瘟疫情暴发后,专家预测,2019年我市猪肉售价将逐月上涨,每千克猪肉的售价y1(元)与月份x(1≤x≤12,且x为整数)之间满足一次函数关系,如下表所示.每千克猪肉的成本y2(元)与月份x(1≤x≤12,且x为整数)之间满足二次函数关系,且3月份每千克猪肉的成本全年最低,为9元,如图所示.
(1)求y1与x之间的函数关系式.
(2)求y2与x之间的函数关系式.
(3)设销售每千克猪肉所获得的利润为w(元),求w与x之间的函数关系式,哪个月份销售每千克猪肉所第获得的利润最大?最大利润是多少元?
26.(12分)已知二次函数.
用配方法将其化为的形式;
在所给的平面直角坐标系xOy中,画出它的图象.
参考答案
一、选择题(每题4分,共48分)
1、A
2、A
3、C
4、B
5、C
6、A
7、D
8、A
9、B
10、D
11、D
12、B
二、填空题(每题4分,共24分)
13、-1
14、90°
15、
16、1750
17、.
18、y=2x﹣1
三、解答题(共78分)
19、(1)见解析;(2)1或-1
20、(1)CD;(2)平行线分段成比例定理(两条直线被三条平行的直线所截,截得的对应线段成比例)等;(3)
21、(Ⅰ)1;(Ⅱ)﹣4<y<﹣1.
22、(1)证明见解析;(2)6π.
23、(1)140°;(2)当点A在优弧BD上运动,四边形为平行四边形时,点O在∠BAD内部时,+=60°;点O在∠BAD外部时,|-|=60°.
24、(1)顶点;(2)是直角三角形.
25、(1)y1=2x+6;(2)y2=x2﹣x+;(3)w=﹣x2+x﹣,1月份销售每千克猪肉所第获得的利润最大,最大利润是11元1.
26、(1);(2)见解析.
x
…
﹣1
﹣
0
1
2
3
…
y
…
2
m
﹣1
﹣
﹣2
﹣
﹣1
2
…
月份x
…
3
4
5
6
…
售价y1/元
…
12
14
16
18
…
相关试卷
这是一份2023-2024学年贵州省黔西南州望谟六中学数学九上期末统考模拟试题含答案,共8页。试卷主要包含了已知抛物线,则下列说法正确的是等内容,欢迎下载使用。
这是一份贵州黔西南州望谟三中学2023-2024学年九上数学期末学业水平测试模拟试题含答案,共8页。试卷主要包含了一元二次方程的根是等内容,欢迎下载使用。
这是一份贵州省黔西南州望谟六中学2023-2024学年八年级数学第一学期期末达标测试试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,函数y=的自变量x的取值范围是,下列运算正确的是,下列图标中是轴对称图形的是,用科学记数法表示为,下列命题是假命题的是等内容,欢迎下载使用。