贵州铜仁松桃县2023-2024学年数学九年级第一学期期末教学质量检测模拟试题含答案
展开
这是一份贵州铜仁松桃县2023-2024学年数学九年级第一学期期末教学质量检测模拟试题含答案,共8页。试卷主要包含了方程的解的个数为,下列事件中,必然事件是,-2019的相反数是等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每题4分,共48分)
1.如图,是正内一点,若将绕点旋转到,则的度数为( )
A.B.
C.D.
2.如图,在平面直角坐标系xOy中,△ABC顶点的横、纵坐标都是整数.若将△ABC以某点为旋转中心,顺时针旋转90°,得到△A1B1C1,则旋转中心的坐标是( )
A.(0,0)B.(1,0)C.(1,﹣1)D.(1,﹣2)
3.如图,在平面直角坐标系中,直线AB与x轴,y轴分别交于A,B,与反比例函数(k>0)在第一象限的图象交于点E,F,过点E作EM⊥y轴于M,过点F作FN⊥x轴于N,直线EM与FN交于点C,若,则△OEF与△CEF的面积之比是( )
A.2:1B.3:1C.2:3D.3:2
4.方程的解的个数为( )
A.0B.1C.2D.1或2
5.下列事件中,必然事件是( )
A.任意掷一枚均匀的硬币,正面朝上
B.从一副扑克牌中,随意抽出一张是大王
C.通常情况下,抛出的篮球会下落
D.三角形内角和为360°
6.入冬以来气温变化异常,在校学生患流感人数明显增多,若某校某日九年级8个班因病缺课人数分别为2、6、4、6、10、4、6、2,则这组数据的众数是( )
A.5人B.6人C.4人D.8人
7.-2019的相反数是( )
A.2019B.-2019 C. D.
8.分别写有数字﹣4,0,﹣1,6,9,2的六张卡片,除数字外其它均相同,从中任抽一张,则抽到偶数的概率是( )
A.B.C.D.
9.如图,在同一平面直角坐标系中,一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,则不等式y1>y2的解集是( )
A.﹣3<x<2B.x<﹣3或x>2C.﹣3<x<0或x>2D.0<x<2
10.若一个扇形的圆心角是45°,面积为,则这个扇形的半径是( )
A.4B.C.D.
11.正方形的边长为4,若边长增加x,那么面积增加y,则y关于x的函数表达式为( )
A.B.C.D.
12.正比例函数y=2x和反比例函数的一个交点为(1,2),则另一个交点为( )
A.(﹣1,﹣2)B.(﹣2,﹣1)C.(1,2)D.(2,1)
二、填空题(每题4分,共24分)
13.若方程x2﹣2x﹣4=0的两个实数根为a,b,则 -a2 - b2的值为_________。
14.如图,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,将腰CD以D为中心逆时针旋转90°至DE,连接AE、CE,△ADE的面积为3,则BC的长为____________.
15.正方形A1B1C2C1,A2B2C3C2,A3B3C4C3按如图所示的方式放置,点A1、A2、A3和点C1、C2、C3、C4分别在抛物线y=x2和y轴上,若点C1(0,1),则正方形A3B3C4C3的面积是________.
16.如图,一个可以自由转动的转盘,任意转动转盘一次,当转盘停止时,指针落在红色区域的概率为____.
17.计算sin60°tan60°-cs45°cs60°的结果为______.
18.如图,的半径为,的面积为,点为弦上一动点,当长为整数时,点有__________个.
三、解答题(共78分)
19.(8分)计算:
(1)
(2)
20.(8分)已知=,求的值.
21.(8分)2019年度双十一在九龙坡区杨家坪的各大知名商场举行“国产家用电器惠民抢购日”优惠促销大行动,许多家用电器经销商都利用这个契机进行打折促销活动.商社电器某国产品牌经销商的某款超高清大屏幕液晶电视机每套成本为4000元,在标价6000元的基础上打9折销售.
(1)现在该经销商欲继续降价吸引买主,问最多降价多少元,才能使利润率不低于?
(2)据媒体爆料,有一些经销商先提高商品价格后再降价促销,存在欺诈行为.重百电器另一个该品牌的经销商也销售相同的超高清大屏幕液晶电视机,其成本、标价与商社电器的经销商一致,以前每周可售出20台,现重百的经销商先将标价提高,再大幅降价元,使得这款电视机在2019年11月11日那一天卖出的数量就比原来一周卖出的数量增加了,这样一天的利润达到22400元,求的值.(利润=售价-成本)
22.(10分)某苗圃用花盆培育某种花苗,经过试验发现,每盆植人3株时,平均每株盈利3元.在同样的栽培条件下,若每盆增加1株,平均每株盈利就减少0.5元,要使每盆的盈利为10元,且每盆植入株数尽可能少,每盆应植入多少株?
23.(10分)改善小区环境,争创文明家园.如图所示,某社区决定在一块长()16,宽()9的矩形场地上修建三条同样宽的小路,其中两条与平行,另一条与平行,其余部分种草.要使草坪部分的总面积为112,则小路的宽应为多少?
24.(10分)如图,抛物线的图象过点.
(1)求抛物线的解析式;
(2)在抛物线的对称轴上是否存在一点P,使得△PAC的周长最小,若存在,请求出点P的坐标及△PAC的周长;若不存在,请说明理由;
(3)在(2)的条件下,在x轴上方的抛物线上是否存在点M(不与C点重合),使得?若存在,请求出点M的坐标;若不存在,请说明理由.
25.(12分)定义:在平面直角坐标系中,抛物线()与直线交于点、(点在点右边),将抛物线沿直线翻折,翻折前后两抛物线的顶点分别为点、,我们将两抛物线之间形成的封闭图形称为惊喜线,四边形称为惊喜四边形,对角线与之比称为惊喜度(Degree f surprise),记作.
(1)如图(1)抛物线沿直线翻折后得到惊喜线.则点坐标 ,点坐标 ,惊喜四边形属于所学过的哪种特殊平行四边形? ,为 .
(2)如果抛物线()沿直线翻折后所得惊喜线的惊喜度为1,求的值.
(3)如果抛物线沿直线翻折后所得的惊喜线在时,其最高点的纵坐标为16,求的值并直接写出惊喜度.
26.(12分)为了了解班级学生数学课前预习的具体情况,郑老师对本班部分学生进行了为期一个月的跟踪调查,他将调查结果分为四类:A:很好;B:较好;C:一般;D:不达标,并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:
(1)C类女生有 名,D类男生有 名,将上面条形统计图补充完整;
(2)扇形统计图中“课前预习不达标”对应的圆心角度数是 ;
(3)为了共同进步,郑老师想从被调查的A类和D类学生中各随机机抽取一位同学进行“一帮一”互助学习,请用画树状图或列表的方法求出所选两位同学恰好是一男一女同学的概率,
参考答案
一、选择题(每题4分,共48分)
1、B
2、C
3、A
4、C
5、C
6、B
7、A
8、D
9、C
10、A
11、C
12、A
二、填空题(每题4分,共24分)
13、-12
14、1
15、2+.
16、
17、1
18、4
三、解答题(共78分)
19、 (1);(2)
20、-7
21、(1)最多降价200元,才能使得利润不低于;(2)的值为1
22、4株
23、小路的宽应为1.
24、(1);(2)存在,点,周长为:;(3)存在,点M坐标为
25、(1);;菱形;2;(2);(3),或,.
26、(1)3,1;(2)36°;(3)
相关试卷
这是一份2023-2024学年贵州省铜仁松桃县联考数学九年级第一学期期末学业水平测试模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,下列说法中正确的是等内容,欢迎下载使用。
这是一份2023-2024学年贵州省铜仁松桃县联考九年级数学第一学期期末复习检测试题含答案,共7页。试卷主要包含了答题时请按要求用笔,下列说法中,不正确的是,方程x2=3x的解为等内容,欢迎下载使用。
这是一份2023-2024学年贵州省铜仁地区松桃县数学九上期末检测模拟试题含答案,共8页。