西安市东仪中学2023-2024学年数学九上期末复习检测试题含答案
展开学校_______ 年级_______ 姓名_______
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1.如图所示的几何体的左视图为( )
A.B.C.D.
2.下列图形中是中心对称图形的共有( )
A.1个B.2个C.3个D.4个
3.如图,小明同学将一个圆锥和一个三棱柱组成组合图形,观察其三视图,其俯视图是( )
A.B.C.D.
4.如图1,点从的顶点出发,沿匀速运动到点,图2是点运动时,线段的长度随时间变化的关系图象,其中为曲线部分的最低点,则的面积为( )
A.B.C.D.
5.若将一个正方形的各边长扩大为原来的4倍,则这个正方形的面积扩大为原来的( )
A.16倍B.8倍C.4倍D.2倍
6.已知是的反比例函数,下表给出了与的一些值,表中“▲”处的数为( )
A.B.C.D.
7.如图所示,已知A(,y1),B(2,y2)为反比例函数图像上的两点,动点P(x,0)在x正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是( )
A.(,0)B.(1,0)C.(,0)D.(,0)
8.关于x的一元二次方程x2﹣(k+3)x+2k+2=0的根的情况,下面判断正确的是( )
A.有两个相等的实数根B.有两个不相等的实数根C.有两个实数根D.无实数根
9.用配方法解方程x2+2x﹣5=0时,原方程应变形为( )
A.(x﹣1)2=6B.(x+1)2=6C.(x+2)2=9D.(x﹣2)2=9
10.定义新运算:对于两个不相等的实数,,我们规定符号表示,中的较大值,如:.因此,;按照这个规定,若,则的值是( )
A.-1B.-1或C.D.1或
11.已知点,如果把点绕坐标原点顺时针旋转后得到点,那么点的坐标为( )
A.B.C.D.
12.下列事件中是必然发生的事件是( )
A.投掷一枚质地均匀的骰子,掷得的点数是奇数;
B.某种彩票中奖率是1%,则买这种彩票100张一定会中奖;
C.掷一枚硬币,正面朝上 ;
D.任意画一个三角形,其内角和是180° .
二、填空题(每题4分,共24分)
13..甲、乙、丙、丁四位同学在五次数学测验中他们成绩的平均分相等,方差分别是2.3,3.8,5.2,6.2,则成绩最稳定的同学是______.
14.____.
15.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的
位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF离地面的高度AC=1.5 m,CD=8 m,则树高AB= ▲ .
16.已知关于x的一元二次方程(m+1)x2+4x+m2+m=0的一个根为0,则m的值是_________.
17.如果一个四边形的某个顶点到其他三个顶点的距离相等,我们把这个四边形叫做等距四边形,这个顶点叫做这个四边形的等距点.如图,已知梯形ABCD是等距四边形,AB∥CD,点B是等距点.若BC=10,csA=,则CD的长等于_____.
18.已知某小区的房价在两年内从每平方米8100元增加到每平方米12500元,设该小区房价平均每年增长的百分率为,根据题意可列方程为______.
三、解答题(共78分)
19.(8分)如图,在平面直角坐标系中,抛物线与轴交于点和点,与轴交于点,且.点在第四象限且在抛物线上.
(1)如(图1),当四边形面积最大时,在线段上找一点,使得最小,并求出此时点的坐标及的最小值;
(2)如(图2),将沿轴向右平移2单位长度得到,再将绕点逆时针旋转度得到,且使经过、的直线与直线平行(其中),直线与抛物线交于、两点,点在抛物线上.在线段上是否存在点,使以点、、、为顶点的四边形为平行四边形?若存在,请直接写出点的坐标;若不存在,请说明理由.
20.(8分)四张质地相同的卡片如图所示.将卡片洗匀后,背面朝上放置在桌面上.
(1)求随机抽取一张卡片,恰好得到数字2的概率;
(2)小贝和小晶想用以上四张卡片做游戏,游戏规则见信息图.你认为这个游戏公平吗?请用列表法或画树形图法说明理由.
21.(8分)为了估计鱼塘中的鱼数,养鱼老汉首先从鱼塘中打捞条鱼,并在每一条鱼身上做好记号,然后把这些鱼放归鱼塘,过一段时间,让鱼儿充分游动,再从鱼塘中打捞条鱼,如果在这条鱼中有条是有记号的,那么养鱼老汉就能估计鱼塘中鱼的条数.请写出鱼塘中鱼的条数,并说明理由.
22.(10分)一节数学课后,老师布置了一道课后练习题:
如图1,是的直径,点在上,,垂足为,,分别交、于点、.求证:.
图1 图2
(1)本题证明的思路可用下列框图表示:
根据上述思路,请你完整地书写本题的证明过程.
(2)如图2,若点和点在的两侧,、的延长线交于点,的延长线交于点,其余条件不变,(1)中的结论还成立吗?请说明理由;
(3)在(2)的条件下,若,,求的长.
23.(10分)某公司销售某一种新型通讯产品,已知每件产品的进价为4万元,每月销售该种产品的总开支(不含进价)总计11万元,在销售过程中发现,月销售量(件)与销售单价(万元)之间存在着如图所示的一次函数关系
(1)求关于的函数关系式.
(2)试写出该公司销售该种产品的月获利(万元)关于销售单价(万元)的函数关系式,当销售单价为何值时,月获利最大?并求这个最大值.(月获利=月销售额一月销售产品总进价一月总开支)
24.(10分)如图是一种简易台灯的结构图,灯座为△ABC,A、C、D在同一直线上,量得∠ACB=90°,∠A=60°,AB=16cm,∠ADE=135°,灯杆CD长为40cm,灯管DE长为15cm.求台灯的高(即台灯最高点E到底盘AB的距离).(结果取整,参考数据sin15°≈0.26,cs15°≈0.97,tan15°≈0.27,≈1.73)
25.(12分)在下列网格图中,每个小正方形的边长均为1个单位. Rt△ABC中,∠C=90°,AC=3,BC=4,△ABC以A为旋转中心,沿顺时针方向旋转90°后得到△AB1C1;
(1)作出△AB1C1;(不写画法)
(2)求点C转过的路径长;
(3)求边AB扫过的面积.
26.(12分)在一空旷场地上设计一落地为矩形的小屋,,拴住小狗的长的绳子一端固定在点处,小狗在不能进入小屋内的条件下活动,其可以活动的区域面积为.
(1)如图1,若,则__________.
(2)如图2,现考虑在(1)中的矩形小屋的右侧以为边拓展一正区域,使之变成落地为五边形的小屋,其他条件不变,则在的变化过程中,当取得最小值时,求边的长及的最小值.
参考答案
一、选择题(每题4分,共48分)
1、D
2、B
3、B
4、C
5、A
6、D
7、D
8、C
9、B
10、B
11、B
12、D
二、填空题(每题4分,共24分)
13、甲
14、
15、5.5
16、1
17、16
18、
三、解答题(共78分)
19、(1)点,的最小值;(2)存在,点的坐标可以为,,或
20、(1)P(抽到数字2)=;(2)游戏不公平,图表见解析.
21、.
22、(1)见解析;(2)成立,理由见解析;(3)
23、(1);(2)当x=10万元时,最大月获利为7万元
24、台灯的高约为45cm.
25、(1)见解析;(2)π;(3)π
26、(1)88π;(2)BC长为;S的最小值为.
▲
陕西省西安市东仪中学2023-2024学年数学九年级第一学期期末监测试题含答案: 这是一份陕西省西安市东仪中学2023-2024学年数学九年级第一学期期末监测试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,若反比例函数y=等内容,欢迎下载使用。
2023-2024学年西安市东仪中学数学八上期末经典试题含答案: 这是一份2023-2024学年西安市东仪中学数学八上期末经典试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,如图,在中,按以下步骤作图,下列四组数据,能组成三角形的是,8的立方根是等内容,欢迎下载使用。
2023-2024学年陕西省西安市东仪中学数学八年级第一学期期末质量检测试题含答案: 这是一份2023-2024学年陕西省西安市东仪中学数学八年级第一学期期末质量检测试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,下列图案不是轴对称图形的是等内容,欢迎下载使用。