重庆市梁平区2023-2024学年数学九上期末调研试题含答案
展开学校_______ 年级_______ 姓名_______
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1.如图,AB为⊙O的直径,CD为⊙O上的两个点(CD两点分别在直径AB的两侧),连接BD,AD,AC,CD,若∠BAD=56°,则∠C的度数为()
A.56°B.55°
C.35°D.34°
2.如图,滑雪场有一坡角α为20°的滑雪道,滑雪道AC的长为200米,则滑雪道的坡顶到坡底垂直高度AB的长为( )
A.200tan20°米B.米C.200sin20°米D.200cs20°米
3.如图,△ABC内接于⊙O,若∠A=α,则∠OBC等于( )
A.180°﹣2αB.2αC.90°+αD.90°﹣α
4.在一个不透明的口袋中装有3个红球和2个白球,它们除颜色不同外,其余均相同.把它们搅匀后从中任意摸出1个球,则摸到红球的概率是( )
A.B.C.D.
5.点在二次函数y=x2+3x﹣5的图像上,x与y对应值如下表:
那么方程x2+3x﹣5=0的一个近似根是( )
A.1B.1.1C.1.2D.1.3
6.如图,电路图上有四个开关A、B、C、D和一个小灯泡,则任意闭合其中两个开关,小灯泡发光的概率是( )
A.B.C.D.
7.将抛物线的图象向右平移1个单位,再向下平移两个单位后,则所得抛物线解析式为( )
A.B.C.D.
8.如图,由一些完全相同的小正方体搭成的几何体的左视图和俯视图,则这个几何体的主视图不可能是( )
A.B.C.D.
9.一次函数与二次函数在同一平面直角坐标系中的图象可能是( ).
A.B.C.D.
10.如图,在的正方形网格中,每个小正方形的边长都是,的顶点都在这些小正方形的顶点上,则的值为( )
A.B.C.D.
11.设,,是抛物线上的三点,则的大小关系为( )
A.B.C.D.
12.﹣3的绝对值是( )
A.﹣3B.3C.-D.
二、填空题(每题4分,共24分)
13.计算:=_____.
14.国家对药品实施价格调整,某药品经过两次降价后,每盒的价格由原来的60元降至48.6元,那么平均每次降价的百分率是________________.
15.如图,在某一时刻,太阳光线与地面成的角,一只皮球在太阳光的照射下的投影长为,则皮球的直径是______.
16.若(m-1) +2mx-1=0是关于x的一元二次方程,则m的值是______.
17.九年级学生在毕业前夕,某班每名同学都为其他同学写一段毕业感言,全班共写了2256段毕业感言,如果该班有x名同学,根据题意列出方程为____.
18.已知点P(a,b)在反比例函数y=的图象上,则ab=_____.
三、解答题(共78分)
19.(8分)如图,梯形ABCD中,AB//CD,且AB=2CD,E,F分别是AB,BC的中点.
EF与BD相交于点M.
(1)求证:△EDM∽△FBM;
(2)若DB=9,求BM.
20.(8分)如图,已知一次函数的图象与反比例函数的图象交于点,与轴交于点,连接,点为轴上一点,,连接.
(1)求反比例函数与一次函数的解析式;
(2)求的面积.
21.(8分) “十一”黄金周期间,我市享有“江南八达岭”美誉的江南长城旅游区,为吸引游客组团来此旅游,特推出了如下门票收费标准:
标准一:如果人数不超过20人,门票价格60元/人;
标准二:如果人数超过20人,每超过1人,门票价格降低2元,但门票价格不低于50元/人.
(1)若某单位组织23名员工去江南长城旅游区旅游,购买门票共需费用多少元?
(2)若某单位共支付江南长城旅游区门票费用共计1232元,试求该单位这次共有多少名员工去江南长城旅游区旅游?
22.(10分)如图,抛物线y=-x2+bx+c与x轴交于点A(-1,0),与y轴交于点B(0,2),直线y=x-1与y轴交于点C,与x轴交于点D,点P是线段CD上方的抛物线上一动点,过点P作PF垂直x轴于点F,交直线CD于点E,
(1)求抛物线的解析式;
(2)设点P的横坐标为m,当线段PE的长取最大值时,解答以下问题.
①求此时m的值.
②设Q是平面直角坐标系内一点,是否存在以P、Q、C、D为顶点的平行四边形?若存在,直接写出点Q的坐标;若不存在,请说明理由.
23.(10分)如图,在中,,矩形的顶点、分别在边、上,、在边上.
(1)求证:∽;
(2)若,则面积与面积的比为 .
24.(10分)如图,一艘船由A港沿北偏东65°方向航行90km至B港,然后再沿北偏西40°方向航行至C港,C港在A港北偏东20°方向,求A,C两港之间的距离.
25.(12分)已知:如图,在四边形ABCD中,AB∥CD,对角线AC、BD交于点E,点F在边AB上,连接CF交线段BE于点G,CG2=GE•GD.
(1)求证:∠ACF=∠ABD;
(2)连接EF,求证:EF•CG=EG•CB.
26.(12分)如图,学校准备在教学楼后面搭建一个简易矩形自行车车棚,一边利用教学楼的后墙(可利用的墙长为19 m),另外三边利用学校现有总长38 m的铁栏围成.
(1)若围成的面积为180 m2,试求出自行车车棚的长和宽;
(2)能围成面积为200 m2的自行车车棚吗?如果能,请你给出设计方,如果不能,请说明理由.
参考答案
一、选择题(每题4分,共48分)
1、D
2、C
3、D
4、D
5、C
6、A
7、A
8、A
9、C
10、D
11、D
12、B
二、填空题(每题4分,共24分)
13、3
14、10%
15、15
16、-2
17、(x﹣1)x=2256
18、2
三、解答题(共78分)
19、(1)证明见解析(2)3
20、(1)y1=x+1,;(2)14
21、(1)112;(2)22
22、(1)y=﹣x1+x+1;(1)①m=;②存在以P、Q、C、D为顶点的四边形是平行四边形,点Q的坐标为
23、(1)见解析;(2)1.
24、(90+30)km.
25、(1)证明见解析;(2)证明见解析.
26、(1)长和宽分别为18 m,10 m;(2)不能,理由见解析
重庆市梁平区梁平区袁驿中学2023-2024学年九年级上学期期中数学试题(原卷+解析): 这是一份重庆市梁平区梁平区袁驿中学2023-2024学年九年级上学期期中数学试题(原卷+解析),文件包含精品解析重庆市梁平区梁平区袁驿中学2023-2024学年九年级上学期期中数学试题原卷版docx、精品解析重庆市梁平区梁平区袁驿中学2023-2024学年九年级上学期期中数学试题解析版docx等2份试卷配套教学资源,其中试卷共32页, 欢迎下载使用。
重庆梁平县联考2023-2024学年九上数学期末调研模拟试题含答案: 这是一份重庆梁平县联考2023-2024学年九上数学期末调研模拟试题含答案,共7页。试卷主要包含了下列事件是必然事件的,已点A等内容,欢迎下载使用。
重庆市璧山区2023-2024学年九上数学期末调研试题含答案: 这是一份重庆市璧山区2023-2024学年九上数学期末调研试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,若,则等内容,欢迎下载使用。