终身会员
搜索
    上传资料 赚现金
    第02讲 等差数列及其前n项和 (练)-备战2024年高考数学一轮复习精讲精练高效测(新教材新高考)
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      第02讲 等差数列及其前n项和 (精练)(原卷版)-高考数学一轮复习讲练测(新教材新高考).docx
    • 解析
      第02讲 等差数列及其前n项和 (精练)(解析版)-高考数学一轮复习讲练测(新教材新高考).docx
    第02讲 等差数列及其前n项和 (练)-备战2024年高考数学一轮复习精讲精练高效测(新教材新高考)01
    第02讲 等差数列及其前n项和 (练)-备战2024年高考数学一轮复习精讲精练高效测(新教材新高考)02
    第02讲 等差数列及其前n项和 (练)-备战2024年高考数学一轮复习精讲精练高效测(新教材新高考)03
    第02讲 等差数列及其前n项和 (练)-备战2024年高考数学一轮复习精讲精练高效测(新教材新高考)01
    第02讲 等差数列及其前n项和 (练)-备战2024年高考数学一轮复习精讲精练高效测(新教材新高考)02
    第02讲 等差数列及其前n项和 (练)-备战2024年高考数学一轮复习精讲精练高效测(新教材新高考)03
    还剩3页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    第02讲 等差数列及其前n项和 (练)-备战2024年高考数学一轮复习精讲精练高效测(新教材新高考)

    展开
    这是一份第02讲 等差数列及其前n项和 (练)-备战2024年高考数学一轮复习精讲精练高效测(新教材新高考),文件包含第02讲等差数列及其前n项和精练原卷版-高考数学一轮复习讲练测新教材新高考docx、第02讲等差数列及其前n项和精练解析版-高考数学一轮复习讲练测新教材新高考docx等2份试卷配套教学资源,其中试卷共18页, 欢迎下载使用。

    A夯实基础
    一、单选题
    1.(2022·四川省南充市白塔中学高一阶段练习(文))在等差数列中,已知,则数列的前6项之和为( )
    A.12B.32C.36D.37
    【答案】C
    数列的前6项之和为.
    故选:C.
    2.(2022·天津天津·高二期末)某中学的“希望工程”募捐小组暑假期间走上街头进行了一次募捐活动,共收到捐款1200元.他们第1天只得到10元,之后采取了积极措施,从第2天起,每一天收到的捐款都比前一天多10元.这次募捐活动一共进行的天数为( )
    A.13B.14C.15D.16
    【答案】C
    由题意可得,第一天募捐10元,第二天募捐20元,
    募捐构成了一个以10元为首项,以10元为公差的等差数列,
    根据题意,设共募捐了天,则,
    解得或(舍去),所以,
    故选:.
    3.(2022·北京市第十二中学高二阶段练习)设等差数列的公差为d,若数列为递减数列,则( )
    A.B.C.D.
    【答案】D
    依题意,数列是公差为d的等差数列,数列为递减数列,
    所以,,.
    故选:D
    4.(2022·黑龙江双鸭山·高二期末)等差数列中,已知,,则的前项和的最小值为( )
    A.B.C.D.
    【答案】B
    ∵等差数列中,,
    ∴,即.又,
    ∴的前项和的最小值为.
    故选:B
    5.(2022·山东师范大学附中模拟预测)如图,在杨辉三角形中,斜线的上方,从1开始箭头所示的数组成一个锯齿形数列:1,3,3,4,6,5,10,…,记其前项和为,则( )
    A.361B.374C.385D.395
    【答案】B
    根据杨辉三角的特征可以将数列继续写出到第22项:
    1,3,3,4,6,5,10,6,15,7,21,8,28,9,36,10,45,11,55,12,66,13,
    所以
    故选:B
    6.(2022·湖北·安陆第一高中高二阶段练习)已知数列的前n项和,若,则( )
    A.5B.6C.7D.8
    【答案】A
    由,得也适合,
    又由得,
    又,
    ∴,
    故选:A.
    7.(2022·全国·模拟预测)设等差数列与等差数列的前n项和分别为,.若对于任意的正整数n都有,则( )
    A.B.C.D.
    【答案】B
    设,,.则,,所以.
    故选:B.
    8.(2022·全国·高二专题练习)等差数列的首项为正数,其前n项和为.现有下列命题,其中是假命题的有( )
    A.若有最大值,则数列的公差小于0
    B.若,则使的最大的n为18
    C.若,,则中最大
    D.若,,则数列中的最小项是第9项
    【答案】B
    对于选项A,∵有最大值,∴ 等差数列一定有负数项,
    ∴等差数列为递减数列,故公差小于0,故选项A正确;
    对于选项B,∵,且,
    ∴,,
    ∴,,
    则使的最大的n为17,故选项B错误;
    对于选项C,∵,,
    ∴,,
    故中最大,故选项C正确;
    对于选项D,∵,,
    ∴,,
    故数列中的最小项是第9项,故选项D正确.
    故选:B.
    二、多选题
    9.(2022·黑龙江·鹤岗一中高二期中)已知等差数列{an}的公差为d,前n项和为Sn,且,则( )
    A.d<0B.a10=0C.S18<0D.S8<S9
    【答案】BC
    , ,所以B正确
    又 , , ,所以A错误

    ,故C正确
    ,故D错误
    故选:BC
    10.(2022·浙江温州·高二期末)某“最强大脑”大赛吸引了全球10000人参加,赞助商提供了2009枚智慧币作为比赛奖金.比赛结束后根据名次(没有并列名次的选手)进行奖励,要求第k名比第名多2枚智慧币,每人得到的智慧币必须是正整数,且所有智慧币必须都分给参赛者,按此规则主办方可能给第一名分配( )智慧币.
    A.300B.293C.93D.89
    【答案】BD
    设第一名分配m个智慧币,且总共有x名参赛选手获奖,
    则智慧币分配如下:

    即,
    又,
    ∴,即,
    ∵x,m都为正整数,且,
    ∴,,
    ,,
    ,,
    ,,
    ∴第一名分配89或293个智慧币.
    故选:BD
    三、填空题
    11.(2022·全国·高二课时练习)已知等差数列的前n项和为,且,则数列的公差为_______.
    【答案】2
    设数列的公差为,则由可得:

    化简可得,解得,
    故答案为:2.
    12.(2022·江苏·高二)首项为正数的等差数列,前项和为,且,当________时,取到最大值.
    【答案】5或6##6或5
    由题意,设等差数列为且,公差为,
    因为,
    所以,即,
    因为,所以,即,
    所以为单调递减的等差数列,即
    故当或时,最大.
    故答案为:5或6.
    四、解答题
    13.(2022·山东·高二阶段练习)在等差数列中,.
    (1)求的通项公式;
    (2)设为的前项和,若,求的值.
    【答案】(1)(2)
    (1)设等差数列的公差为,
    由题意可得,解得.
    故.
    (2)由等差数列的前项和公式可得.
    因为,所以,即,
    解得(舍去).
    14.(2022·全国·高三专题练习(文))已知数列的前项和为.
    (1)求出的通项公式;
    (2)求数列前n项和最小时n的取值
    【答案】(1);(2)当或时,数列前n项和取得最小值.
    (1)因为,
    所以当时,;
    当时,;
    显然是,也满足,
    所以;
    (2) 因为,
    所以数列为等差数列,其前n项和

    又,所以当或时,取得最小值.
    B能力提升
    一、单选题
    1.(2022·四川省绵阳南山中学高一期中)设等差数列的公差为,其前项和为,且,,则使得的正整数的最小值为( )
    A.B.C.D.
    【答案】B
    由可得,又,可得,
    由,可得,则,,,
    故使得的正整数的最小值为19.
    故选:B.
    2.(2022·全国·高三专题练习)已知公差非零的等差数列 满足,则下列结论正确的是( )
    A.B.
    C.当时,D.当时,
    【答案】C
    因公差非零的等差数列{an}满足,则有,有, 异号且均不为0,
    对于A,,A不正确;
    对于B,,而,此时,,B不正确;
    对于C,由选项A知,,即,则,于是得,
    数列是递增数列,即,,C正确;
    对于D,由得,则,于是得,数列是递减数列,即,,D不正确.
    故选:C
    3.(2022·全国·高三专题练习)等差数列的前n项和为,已知,,则的最小值为______.
    【答案】
    由,,得,
    解得:,
    则.故.
    由于,故当或4时,.
    故答案为:
    4.(2022·辽宁辽阳·二模)“物不知数”是中国古代著名算题,原载于《孙子算经》卷下第二十六题:“今有物不知其数,三三数之剩二;五五数之剩三;七七数之剩二.问物几何?”它的系统解法是秦九韶在《数书九章》大衍求一术中给出的.大衍求一术(也称作“中国剩余定理”)是中国古算中最有独创性的成就之一,属现代数论中的一次同余式组问题,已知问题中,一个数被3除余2,被5除余3,被7除余2,则在不超过4200的正整数中,所有满足条件的数的和为______.
    【答案】82820
    由题可知满足被3除余2,被5除余3.被7除余2的最小的数为23,
    满足该条件的数从小到大构成以23为首项,为公差的等差数列,
    其通项公式为,
    令,解得,
    则所有满足条件的数的和为.
    故答案为:82820.
    5.(2022·山西吕梁·二模(理))已知是等差数列的前项和,,则满足的正整数是________.
    【答案】
    由,得,由,得,由,得,
    所以,,
    所以满足的正整数是.
    故答案为:.
    6.(2022·湖南衡阳·三模)已知各项均为正数的数列的前项和为,且满足,则__________.
    【答案】1122
    由于数列的各项均为正数,即,
    当时,,即,∴,
    当时,由,可得,
    两式相减得,
    又∵,∴,
    ∴为一个以2为首项,2为公差的等差数列,
    ∴.

    故答案为:1122
    C综合素养
    1.(2022·山东济南·三模)如图1,洛书是一种关于天地空间变化脉络的图案,2014年正式入选国家级非物质文化遗产名录,其数字结构是戴九履一,左三右七,二四为肩,六八为足,以五居中,形成图2中的九宫格,将自然数1,2,3,…,放置在n行n列的正方形图表中,使其每行、每列、每条对角线上的数字之和(简称“幻和”)均相等,具有这种性质的图表称为“n阶幻方”.洛书就是一个3阶幻方,其“幻和”为15.则7阶幻方的“幻和”为( )
    图1 图2
    A.91B.169C.175D.180
    【答案】C
    由题意,7阶幻方各行列和,即“幻和”为.
    故选:C
    2.(2022·新疆克拉玛依·三模(文))南宋数学家杨辉在《详解九章算术法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般的等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次成等差数列.如数列1,3,6,10,前后两项之差组成新数列2,3,4,新数列2,3,4为等差数列,这样的数列称为二阶等差数列.现有二阶等差数列,其前7项分别为2,3,5,8,12,17,23,则该数列的第31项为( )
    A.B.
    C.D.
    【答案】D
    解:根据题意,设该数列为,数列的前7项为2,3,5,8,12,17,23,
    则满足,,
    则,
    故选:D.
    3.(2022·陕西·宝鸡中学模拟预测)“中国剩余定理”是关于整除的问题.现有这样一个问题“将1~2030这2030个自然数中,能被3整除余1且能被4整除余1的数按从小到大的顺序排成一列,构成数列,则该数列共有( )
    A.170项B.171项C.168项D.169项
    【答案】A
    能被3整除余1且能被4整除余1的数即被12整除余1的数,故,由题意,,故,故当时成立,共170项.
    故选:A
    4.(2022·浙江·模拟预测)毕达哥拉斯学派是古希腊哲学家毕达哥拉斯及其信徒组成的学派,他们把美学视为自然科学的一个组成部分.美表现在数量比例上的对称与和谐,和谐起于差异的对立,美的本质在于和谐.他们常把数描绘成沙滩上的沙粒或小石子,并由它们排列而成的形状对自然数进行研究.如图所示,图形的点数分别为,总结规律并以此类推下去,第个图形对应的点数为________,若这些数构成一个数列,记为数列,则________.
    【答案】
    记第个图形的点数为,由题意知,,
    ,,…,,
    累加得,
    即,所以.又,
    所以.
    5.(2022·辽宁·东北育才双语学校模拟预测)“物不知数”是中国古代著名算题,原载于《孙子算经》卷下第二十六题:“今有物不知其数,三三数之剩二;五五数之剩三;七七数之剩二.问物几何?”它的系统解法是秦九韶在《数书九章》大衍求一术中给出的.大衍求一术(也称作“中国剩余定理”)是中国古算中最有独创性的成就之一,属现代数论中的一次同余式组问题.已知问题中,一个数被除余,被除余,被除余,则在不超过的正整数中,所有满足条件的数的和为___________.
    【答案】
    由题意可知,一个数被除余,被除余,被除余,则这个正整数的最小值为,
    因为、、的最小公倍数为,
    由题意可知,满足条件的数形成以为首项,以为公差的等差数列,
    设该数列为,则,
    由,可得,所以,的最大值为,
    所以,满足条件的这些整数之和为.
    故答案为:.
    相关试卷

    高考数学一轮复习讲练测(新教材新高考)第02讲等差数列及其前n项和(练习)(原卷版+解析): 这是一份高考数学一轮复习讲练测(新教材新高考)第02讲等差数列及其前n项和(练习)(原卷版+解析),共22页。

    专题7.2 等差数列及其前n项和(讲+练)-备战高考数学大一轮复习核心考点精讲精练(新高考专用): 这是一份专题7.2 等差数列及其前n项和(讲+练)-备战高考数学大一轮复习核心考点精讲精练(新高考专用),文件包含专题72等差数列及其前n项和原卷版docx、专题72等差数列及其前n项和解析版docx等2份试卷配套教学资源,其中试卷共49页, 欢迎下载使用。

    第03讲 等比数列及其前n项和 (练)-备战2024年高考数学一轮复习精讲精练高效测(新教材新高考): 这是一份第03讲 等比数列及其前n项和 (练)-备战2024年高考数学一轮复习精讲精练高效测(新教材新高考),文件包含第03讲等比数列及其前n项和精练原卷版-高考数学一轮复习讲练测新教材新高考docx、第03讲等比数列及其前n项和精练解析版-高考数学一轮复习讲练测新教材新高考docx等2份试卷配套教学资源,其中试卷共21页, 欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        第02讲 等差数列及其前n项和 (练)-备战2024年高考数学一轮复习精讲精练高效测(新教材新高考)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map