- 第06讲 事件的相互独立性、条件概率与全概率公式 (精练)-备战2024年高考数学一轮复习精讲精练高效测(新教材新高考) 试卷 0 次下载
- 第07讲 离散型随机变量及其分布列和数字特征 (精讲)-备战2024年高考数学一轮复习精讲精练高效测(新教材新高考) 试卷 0 次下载
- 第07讲 离散型随机变量及其分布列和数字特征 (精练)-备战2024年高考数学一轮复习精讲精练高效测(新教材新高考) 试卷 0 次下载
- 第09讲 高考中的概率与统计 (精讲)-备战2024年高考数学一轮复习精讲精练高效测(新教材新高考) 试卷 0 次下载
- 第10讲 第十章 计数原理,概率,随机变量及其分布(综合测试)-备战2024年高考数学一轮复习精讲精练高效测(新教材新高考) 试卷 0 次下载
第08讲 二项分布与超几何分布、正态分布 (精练)-备战2024年高考数学一轮复习精讲精练高效测(新教材新高考)
展开A夯实基础
一、单选题
1.(2022·福建省德化第一中学高二期末)疫情期间,学校进行网上授课,某中学参加网课的100名同学每天的学习时间(小时)服从正态分布,则这些同学中每天学习时间超过10小时的人数估计为( ). 附:随机变量服从正态分布,则,.
A.12B.16C.30D.32
2.(2022·广东·佛山市南海区九江中学高二阶段练习)已知随机变量,且,则( )
A.B.C.D.
3.(2022·吉林油田第十一中学高二期末)有20个零件,其中16个一等品,4个二等品,若从这些零件中任取3个,那么至少有1个是一等品的概率是( ).
A.B.C.D.
4.(2022·河南商丘·高二期末(理))在四次独立重复试验中,事件A在每次试验中发生的概率相同,若事件A至少发生一次的概率为,则事件A发生次数的期望是( )
A.B.C.D.
5.(2022·广东清远·高二期末)已知随机变量,若,则( )
A.B.C.D.
6.(2022·山东菏泽·高二期末)已知两个随机变量,,其中,(),若,且,则( )
A.0.4B.0.3C.0.2D.0.1
7.(2022·江苏省木渎高级中学模拟预测)2012年国家开始实施法定节假日高速公路免费通行政策,某收费站统计了2021年中秋节前后车辆通行数量,发现该站近几天车辆通行数量,若,则当时下列说法正确的是( )
A.B.C.D.
8.(2022·全国·高二课时练习)1654年,德·梅雷骑士偶遇数学家布莱兹·帕斯卡,在闲聊时梅雷谈了最近遇到的一件事:某天在一酒吧中,肖恩和尤瑟纳尔两人进行角力比赛,约定胜者可以喝杯酒,当肖恩赢20局且尤瑟纳尔赢得40局时,他们发现桌子上还剩最后一杯酒,酒吧老板和伙计提议两人中先胜四局的可以喝最后那杯酒,如果四局、五局、六局、七局后可以决出胜负,那么分别由肖恩、尤瑟纳尔、酒吧伙计和酒吧老板付费.猜测最后付费的最有可能是( )
A.肖恩B.尤瑟纳尔C.酒吧伙计D.酒吧老板
二、多选题
9.(2022·全国·高三专题练习)某工厂进行产品质量抽测,两位员工随机从生产线上各抽取数量相同的一批产品,已知在两人抽取的一批产品中均有5件次品,员工A从这一批产品中有放回地随机抽取3件产品,员工B从这一批产品中无放回地随机抽取3件产品.设员工A抽取到的3件产品中次品数量为X,员工B抽取到的3件产品中次品数量为Y,,1,2,3.则下列判断正确的是( )
A.随机变量X服从二项分布B.随机变量Y服从超几何分布
C.D.
10.(2022·全国·高二单元测试)“世界杂交水稻之父”袁隆平发明了“三系法”籼型杂交水稻,成功研究出“两系法”杂交水稻,创建了超级杂交稻技术体系.某水稻种植研究所调查某地杂交水稻的株高,得出株高(单位:cm)服从正态分布,其分布密度函数,,则( )
A.该地杂交水稻的平均株高为100cm
B.该地杂交水稻株高的方差为10
C.该地杂交水稻株高在120cm以上的数量和株高在80cm以下的数量一样多
D.随机测量该地的一株杂交水稻,其株高在和在的概率一样大
三、填空题
11.(2022·福建龙岩·高二期中)甲、乙两人进行跳棋比赛,约定7局4胜制,即谁先赢得4局比赛谁获胜,后面的比赛不需进行.已知每局比赛甲获胜的概率是,乙获胜的概率是,若比赛已经进行了3局,甲以领先,则最终甲以赢得比赛的概率是______.
12.(2022·北京·人大附中高二阶段练习)下图是一块高尔顿板示意图:在一块木块上钉着若干排互相平行但相互错开的圆柱形小木钉,小木钉之间留有适当的空隙作为通道,前面挡有一块玻璃,将小球从顶端放入,小球在下落过程中,每次碰到小木钉后都等可能地向左或向右落下,最后落入底部的格子中,格子从左到右分别编号为1,2,3,……,6,用表示小球落入格子的号码,假定底部6个格子足够长,投入100粒小球,则落入2号格的小球大约有______粒.
四、解答题
13.(2022·北京大兴·高二期末)某工厂引进新的设备M,为对其进行评估,从设备M生产的流水线上随机抽取100件零件作为样本,测量其直径后,整理得到下表:
经计算,样本均值,标准差,以频率值作为概率的估计值.将直径小于等于或大于等于的零件认为是次品.
(1)若从样本中随机抽取一件,该零件为次品的概率为,求的估计值;
(2)记为从流水线上随机抽取的3个零件中次品数,求的分布列(用表示),,.
14.(2022·湖南·张家界市教育科学研究院高二期末)某学校在假期安排了“垃圾分类知识普及实践活动”,为了解学生的学习成果,该校对全校学生进行了测试(满分100分),并随机抽取50名学生的成绩进行统计,将其分成以下6组:,,,,,,整理得到如图所示的频率分布直方图.
(1)求图中的值;
(2)试估计全校学生成绩的第80百分位数;
(3)若将频率视为概率,从全校成绩在80分及以上的学生中随机抽取3人,用表示成绩在中的人数,求随机变量的分布列.
B能力提升
15.(2022·浙江·高三专题练习)为促进物资流通,改善出行条件,驻某县扶贫工作组引入资金新建了一条从该县到市区的快速道路.该县脱贫后,工作组为了解该快速道路的交通通行状况,调查了行经该道路的各种类别的机动车共1000辆,对行车速度进行统计后,得到如图所示的频率分布直方图:
(1)试根据频率分布直方图,求样本中的这1000辆机动车的平均车速(同一组中的数据用该组区间的中点值代替);
(2)设该公路上机动车的行车速度服从正态分布,其中,分别取自该调查样本中机动车的平均车速和车速的方差(经计算).
①请估计该公路上10000辆机动车中车速不低于85千米/时的车辆数(精确到个位);
②现从经过该公路的机动车中随机抽取10辆,设车速低于85千米/时的车辆数为,求的数学期望.
16.(2022·全国·高二单元测试)第30届全国中学生生物学竞赛在浙江省萧山中学举行.为做好本次考试的评价工作,将本次成绩转化为百分制,现从中随机抽取了50名学生的成绩,经统计,这批学生的成绩全部介于40至100之间,将数据按照,,,,,分成6组,制成了如图所示的频率分布直方图.
(1)求频率分布直方图中m的值,并估计这50名学生成绩的中位数;
(2)在这50名学生中用分层随机抽样的方法从成绩在,,的三组中抽取11人,再从这11人中随机抽取3人,记为3人中成绩在的人数,求的分布列和数学期望;
(3)转化为百分制后,规定成绩在的为A等级,成绩在的为B等级,其他为C等级.以样本估计总体,用频率代替概率,从所有参赛的同学中随机抽取100人,其中获得B等级的人数设为,求的数学期望和方差.
17.(2022·全国·高二课时练习)已知小田开小汽车上班的道路A有5个红绿灯路口(只有红灯和绿灯),小田到达每一个路口遇到红灯的概率都为,遇到绿灯的概率都为.
(1)若小田从出门到第一个路口和最后一个路口到办公室各需要5min,在路口遇到红灯的平均等待时间为1min,每两个路口之间的行驶时间为2min,求小田从出门到办公室的平均时间.
(2)小田骑电动车上班的道路B只有3个红绿灯路口(只有红灯和绿灯).
①若小田到达第一个路口遇到红灯、绿灯的概率都为,一个路口遇到红灯时下一个路口遇到红灯和一个路口遇到绿灯时下一个路口遇到绿灯的概率都为,求小田遇到红灯个数的平均值;
②若小田从出门到第一个路口和最后一个路口到办公室各需要4min,在路口遇到红灯的平均等待时间为1min,每两个路口之间的行驶时间为5min,从时间来考虑,请问小田上班是开小汽车好,还是骑电动车好?
C综合素养
18.(2022·河北·高三阶段练习)某防护服生产企业为了奖励员工的辛勤劳动和提升员工工作效率,决定制定一个奖励方案,首先从1000名员工中随机抽取50人进行统计平均每天完成防护服的件数,统计如下表所示:
(1)请根据表中数据估计样本数据的平均数;(每组完成件数区间以区间中点进行估计);
(2)经过企业领导研讨,决定分层次对优秀员工进行物质奖励,首先预设全体员工平均每天完成件数X服从正态分布,其中为(1)中的,.其次根据表中样本数据的频率近似为总体的频率,奖励分三个等级:、、,分别对应每人价值50元、100元、200元的物品奖励,若该等级员工频率不低于预设的概率,则该等级的每位员工的奖励翻倍,求该企业需要准备的奖品总价值的期望.
附:若X服从正态分布,则,,.
19.(2022·湖南·南县第一中学高二期中)某车间生产一批零件,现从中随机抽取10个零件,测量其内径的数据如下(单位:cm):
97 97 98 102 105 107 108 109 113 114
设这10个数据的平均值为,标准差为.
(1)求与;
(2)假设这批零件的内径Z(单位:cm)服从正态分布.
(i)从这批零件中随机抽取5个,设这5个零件中内径小于87cm的个数为X,求;
(ii)若该车间又新购一台新设备,安装调试后,试生产了5个零件,测量其内径(单位:cm)分别为86,95,103,109,118.以原设备生产性能为标准,试问这台设备是否需要进一步调试?说明理由.
参考数据:若,则,,.直径/mm
58
59
61
62
63
64
65
66
67
68
69
70
71
73
合计
件数
1
1
3
5
6
19
33
18
4
4
2
1
2
1
100
平均每天完成件数X
人数
6
14
22
5
3
第08讲 直线与椭圆、双曲线、抛物线 (精练)-备战2024年高考数学一轮复习精讲精练高效测(新教材新高考): 这是一份第08讲 直线与椭圆、双曲线、抛物线 (精练)-备战2024年高考数学一轮复习精讲精练高效测(新教材新高考),文件包含第08讲直线与椭圆双曲线抛物线精练原卷版-高考数学一轮复习讲练测新教材新高考docx、第08讲直线与椭圆双曲线抛物线精练解析版-高考数学一轮复习讲练测新教材新高考docx等2份试卷配套教学资源,其中试卷共21页, 欢迎下载使用。
第08讲 函数与方程(讲+练)-备战2024年高考数学一轮复习精讲精练高效测(新教材新高考): 这是一份第08讲 函数与方程(讲+练)-备战2024年高考数学一轮复习精讲精练高效测(新教材新高考),文件包含第08讲函数与方程精讲+精练原卷版备战高考数学一轮复习精讲精练全国通用版docx、第08讲函数与方程精讲+精练解析版备战高考数学一轮复习精讲精练全国通用版docx等2份试卷配套教学资源,其中试卷共54页, 欢迎下载使用。
第08讲 二项分布与超几何分布、正态分布 (精讲)-备战2024年高考数学一轮复习精讲精练高效测(新教材新高考): 这是一份第08讲 二项分布与超几何分布、正态分布 (精讲)-备战2024年高考数学一轮复习精讲精练高效测(新教材新高考),文件包含第08讲二项分布与超几何分布正态分布精讲原卷版docx、第08讲二项分布与超几何分布正态分布精讲解析版docx等2份试卷配套教学资源,其中试卷共60页, 欢迎下载使用。