(人教A版2019必修第一册)高考数学(精讲精练)必备 第14练 三角函数的图像和性质(原卷版+解析)
展开学校____________ 姓名____________ 班级____________
一、单选题
1.如果函数满足,则的最小值是( )
A.B.C.D.
2.已知函数,则f(x)( )
A.在(0,)单调递减B.在(0,π)单调递增
C.在(—,0)单调递减D.在(—,0)单调递增
3.函数的周期为2,下列说法正确的是( )
A.
B.是奇函数
C.f(x)在[,]上单调递增
D.的图像关于直线对称
4.函数的部分图象大致为( )
A.B.
C.D.
5.对任意,用表示不超过x的最大整数,设函数,则( ).
A.B.
C.D.
6.函数在区间上的所有零点之和为( )
A.B.
C.D.
7.已知函数,若在区间内单调递减,则的取值范围是( )
A.B.C.D.
8.已知以为周期的函数,其中.若方程恰有5个实数解,则的取值范围为( )
A.B.
C.D.
二、多选题
9.已知函数图象的一条对称轴方程为,与其相邻对称中心的距离为,则( )
A.的最小正周期为B.的最小正周期为
C.D.
10.已知函数的图象上,相邻两条对称轴之间的最小距离为,图象沿x轴向左平移单位后,得到一个偶函数的图象,则下列结论正确的是( )
A.函数图象的一个对称中心为
B.当c到时,函数的最小值为
C.若,则的值为
D.函数的减区间为
11.已知是函数图像的一个最高点,B,C是与P相邻的两个最低点.若△PBC为等边三角形,则下列说法正确的是( )
A.
B.的最小正周期为8
C.
D.将图像上所有的点向右平移1个单位长度后得到的图像,是图像的一个对称中心
12.(多选题)声音是由物体振动产生的声波,其中包含着正弦函数.纯音的数学模型是函数,我们听到的声音是由纯音合成的,称之为复合音.若一个复合音的数学模型是函数,则下列结论正确的是( )
A.的图象关于直线对称B.在上是增函数
C.的最大值为D.若,则
三、解答题
13.已知函数.
(1)求函数的最小正周期;
(2)求函数在上的最值.
14.已知函数,且函数的最小正周期为.
(1)求的解析式,并求出的单调递增区间;
(2)将函数的图象向左平移个单位长度得到函数的图象,求函数的最大值及取得最大值时x的取值集合.
15.已知函数.
(1)求函数的最小正周期和对称中心;
(2)若,方程有两个实数解,求实数m的取值范围.
16.已知函数.
(1)求函数在上单调递增区间;
(2)将函数的图象向右平移个单位长度,纵坐标变为原来的2倍,横坐标缩小为原来的,向上平移1个单位长度得到函数的图象,求函数在上的最值.
第14练 三角函数的图像和性质
学校____________ 姓名____________ 班级____________
一、单选题
1.如果函数满足,则的最小值是( )
A.B.C.D.
【答案】B
【详解】
因为函数满足,所以的图象关于对称,
所以,,
所以,,
所以的最小值为.
故选:B
2.已知函数,则f(x)( )
A.在(0,)单调递减B.在(0,π)单调递增
C.在(—,0)单调递减D.在(—,0)单调递增
【答案】D
【详解】
,
故当时,,所以不单调,AB错误;
当时,,在上单调递增,
故D正确
故选:D
3.函数的周期为2,下列说法正确的是( )
A.
B.是奇函数
C.f(x)在[,]上单调递增
D.的图像关于直线对称
【答案】C
【详解】
由可知,,由此可知选项不正确;
由可知,,
即是偶函数,由此可知选项不正确;
由,解得,
当时,区间上为单调递增,由此可知选项正确;
由,解得,
则直线不是的对称轴,由此可知选项不正确;
故选:.
4.函数的部分图象大致为( )
A.B.
C.D.
【答案】B
【详解】
设,因为,
所以该函数是偶函数,其图象关于y轴对称,显然排除AD;
当时,,所以,排除C,
故选:B
5.对任意,用表示不超过x的最大整数,设函数,则( ).
A.B.
C.D.
【答案】A
【详解】
解:因为,所以,
则,所以,
故.
故选:A.
6.函数在区间上的所有零点之和为( )
A.B.
C.D.
【答案】C
【详解】
解:因为,令,即,当时显然不成立,
当时,作出和的图象,如图,
它们关于点对称,
由图象可知它们在上有4个交点,且关于点对称,每对称的两个点的横坐标和为,所以4个点的横坐标之和为.
故选:C.
7.已知函数,若在区间内单调递减,则的取值范围是( )
A.B.C.D.
【答案】C
【详解】
因为在区间内单调递减,所以,在区间内单调递增,
由,,得,,
所以的单调递增区间为,,
依题意得,,
所以,,
所以,,
由得,由得,
所以且,
所以或,
当时,,又,所以,
当时,.
综上所述:.
故选:C.
8.已知以为周期的函数,其中.若方程恰有5个实数解,则的取值范围为( )
A.B.
C.D.
【答案】B
【详解】
解:作出函数和的图象如图:
若方程恰有5个实数解,
则直线处在函数在内的曲线切线和之间.
函数是周期为4的周期函数,
,此时.
,,
此时两个函数不相交.
当,时,,,
,,.
由,得,
则由,得,
整理得,解得,
当,时,,,
,,.
即,将代入整理得,
即,
由判别式得
要使方程恰有5个实数解,则,
即的取值范围为,
故选:B.
二、多选题
9.已知函数图象的一条对称轴方程为,与其相邻对称中心的距离为,则( )
A.的最小正周期为B.的最小正周期为
C.D.
【答案】AC
【详解】
因为图象相邻的对称中心与对称轴的距离为,所以最小正周期,故A正确,B不正确;
因为,且,所以,故C正确,D不正确,
故选:AC.
10.已知函数的图象上,相邻两条对称轴之间的最小距离为,图象沿x轴向左平移单位后,得到一个偶函数的图象,则下列结论正确的是( )
A.函数图象的一个对称中心为
B.当c到时,函数的最小值为
C.若,则的值为
D.函数的减区间为
【答案】BCD
【详解】
根据相邻两条对称轴之间的最小距离为,可知周期,故;
图象沿x轴向左平移单位后,得到是偶函数,所以 ,故
当,,故A错.
时,,,故B对.
,其中,故,C对.
令,故函数的减区间为,D对.
故选:BCD
11.已知是函数图像的一个最高点,B,C是与P相邻的两个最低点.若△PBC为等边三角形,则下列说法正确的是( )
A.
B.的最小正周期为8
C.
D.将图像上所有的点向右平移1个单位长度后得到的图像,是图像的一个对称中心
【答案】BC
【详解】
连接BC,设BC的中点为D,与P相邻的函数的图像与x轴的交点为E,F,即E,F为函数图像的两个对称中心,连接PB,PD,则由题意知,故选项A错误;
易知,,所以,,则的最小正周期为8,故选项B正确;
因为,则,,且,所以,故选项C正确;
因为,则将图像上所有的点向右平移1个单位长度后得到的图像,易知不是的图像的对称中心,故选项D错误 ,
故选:BC.
12.(多选题)声音是由物体振动产生的声波,其中包含着正弦函数.纯音的数学模型是函数,我们听到的声音是由纯音合成的,称之为复合音.若一个复合音的数学模型是函数,则下列结论正确的是( )
A.的图象关于直线对称B.在上是增函数
C.的最大值为D.若,则
【答案】BCD
【详解】
对于A,因,则的图象关于对称,不关于对称,A错误;
对于B,因与在上都是增函数,则在上是增函数,B正确;
对于C,因,即是奇函数,
又与的最小正周期分别为与,则的正周期为,
当时,,令,得,即,
当时,,当时,,则在上递增,在上递减,
因此,在上的最大值为,由是奇函数得在上的最大值为,
由的正周期为,则在R上的最大值为,C正确;
对于D,由选项C得,,,,
又,则,
所以当时,,D正确.
故选:BCD
三、解答题
13.已知函数.
(1)求函数的最小正周期;
(2)求函数在上的最值.
【答案】(1)(2)最大值为,最小值为
【解析】(1)
解:∵,
∴,即函数的最小正周期为.
(2)解:在区间上,,
∴,
∴,
∴的最大值为,的最小值为.
14.已知函数,且函数的最小正周期为.
(1)求的解析式,并求出的单调递增区间;
(2)将函数的图象向左平移个单位长度得到函数的图象,求函数的最大值及取得最大值时x的取值集合.
【答案】(1),;
(2),.
【解析】(1)
由函数的最小正周期为,则,
故,
令,解得,
故的单调递增区间为.
(2),
则的最大值为,
此时有,即,
故,解得,
所以当取得最大值时的取值集合为.
15.已知函数.
(1)求函数的最小正周期和对称中心;
(2)若,方程有两个实数解,求实数m的取值范围.
【答案】(1)最小正周期,对称中心为
(2)
【解析】(1)
=
=
=
=
所以,最小正周期,
由,得
所以,对称中心为.
(2)
因为,所以,
由正弦曲线可得.
16.已知函数.
(1)求函数在上单调递增区间;
(2)将函数的图象向右平移个单位长度,纵坐标变为原来的2倍,横坐标缩小为原来的,向上平移1个单位长度得到函数的图象,求函数在上的最值.
【答案】(1)函数的单调递增区间是;
(2)最小值为,最大值为
【解析】(1)
,
令,因为 ,所以,
所以在上单调递递增,函数在上单调递增.
(2)
由将函数的图象向右平移个单位长度,纵坐标变为原来的2倍,横坐标缩小为原来的,向上平移1个单位长度得到函数的图象,得:,
因为,所以 ,所以,
所以函数在上的最小值为,最大值为.
(人教A版2019必修第一册)高考数学(精讲精练)必备 第17练 复数(原卷版+解析): 这是一份(人教A版2019必修第一册)高考数学(精讲精练)必备 第17练 复数(原卷版+解析),共10页。试卷主要包含了单选题,填空题等内容,欢迎下载使用。
(人教A版2019必修第一册)高考数学(精讲精练)必备 第14讲 三角函数的图像和性质(讲义+解析): 这是一份(人教A版2019必修第一册)高考数学(精讲精练)必备 第14讲 三角函数的图像和性质(讲义+解析),共19页。试卷主要包含了知识梳理等内容,欢迎下载使用。
(人教A版2019必修第一册)高考数学(精讲精练)必备 第6练 函数的图像(原卷版+解析): 这是一份(人教A版2019必修第一册)高考数学(精讲精练)必备 第6练 函数的图像(原卷版+解析),共20页。试卷主要包含了单选题,多选题,填空题等内容,欢迎下载使用。