终身会员
搜索
    上传资料 赚现金
    2024年高考数学重难点突破讲义:2021全国乙卷(理)
    立即下载
    加入资料篮
    2024年高考数学重难点突破讲义:2021全国乙卷(理)01
    2024年高考数学重难点突破讲义:2021全国乙卷(理)02
    2024年高考数学重难点突破讲义:2021全国乙卷(理)03
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年高考数学重难点突破讲义:2021全国乙卷(理)

    展开
    这是一份2024年高考数学重难点突破讲义:2021全国乙卷(理),共25页。

    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.
    3.考试结束后,将本试卷和答题卡一并交回.
    一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
    1. 设,则( )
    A. B. C. D.
    【答案】C
    【解析】设,则,则,
    所以,,解得,因此,.
    2. 已知集合,,则( )
    A. B. C. D.
    【答案】C
    【解析】任取,则,其中,所以,,故,
    因此,.
    3. 已知命题﹔命题﹐,则下列命题中为真命题的是( )
    A. B. C. D.
    【答案】A
    【解析】由于,所以命题为真命题;
    由于在上为增函数,,所以,所以命题为真命题;
    所以为真命题,、、为假命题.
    4. 设函数,则下列函数中为奇函数的是( )
    A. B. C. D.
    【答案】B
    【解析】由题意可得,
    对于A,不是奇函数;
    对于B,是奇函数;
    对于C,,定义域不关于原点对称,不是奇函数;
    对于D,,定义域不关于原点对称,不是奇函数.
    5. 在正方体中,P为的中点,则直线与所成的角为( )
    A. B. C. D.
    【答案】D
    【解析】
    如图,连接,因为∥,
    所以或其补角为直线与所成的角,
    因为平面,所以,又,,
    所以平面,所以,
    设正方体棱长为2,则,
    ,所以.
    6. 将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有( )
    A. 60种B. 120种C. 240种D. 480种
    【答案】C
    【解析】根据题意,有一个项目中分配2名志愿者,其余各项目中分配1名志愿者,可以先从5名志愿者中任选2人,组成一个小组,有种选法;然后连同其余三人,看成四个元素,四个项目看成四个不同的位置,四个不同的元素在四个不同的位置的排列方法数有4!种,根据乘法原理,完成这件事,共有种不同的分配方案.
    7. 把函数图像上所有点的横坐标缩短到原来的倍,纵坐标不变,再把所得曲线向右平移个单位长度,得到函数的图像,则( )
    A. B.
    C. D.
    【答案】B
    【解析】解法一:函数图象上所有点的横坐标缩短到原来的倍,纵坐标不变,得到的图象,再把所得曲线向右平移个单位长度,应当得到的图象,
    根据已知得到了函数的图象,所以,
    令,则,
    所以,所以;
    解法二:由已知的函数逆向变换,
    第一步:向左平移个单位长度,得到的图象,
    第二步:图象上所有点的横坐标伸长到原来的2倍,纵坐标不变,得到的图象,
    即为的图象,所以.
    8. 在区间与中各随机取1个数,则两数之和大于的概率为( )
    A. B. C. D.
    【答案】B
    【解析】如图所示:

    设从区间中随机取出的数分别为,则实验的所有结果构成区域为,其面积为.
    设事件表示两数之和大于,则构成的区域为,即图中的阴影部分,其面积为,所以.
    9. 魏晋时刘徽撰写的《海岛算经》是有关测量的数学著作,其中第一题是测海岛的高.如图,点,,在水平线上,和是两个垂直于水平面且等高的测量标杆的高度,称为“表高”,称为“表距”,和都称为“表目距”,与的差称为“表目距的差”则海岛的高( )
    A. 表高B. 表高
    C. 表距D. 表距
    【答案】A
    【解析】如图所示:
    由平面相似可知,,而 ,所以
    ,而 ,
    即= .
    10. 设,若为函数的极大值点,则( )
    A. B. C. D.
    【答案】D
    【解析】若,则为单调函数,无极值点,不符合题意,故.
    有和两个不同零点,且在左右附近是不变号,在左右附近是变号的.依题意,a为函数的极大值点,在左右附近都是小于零的.
    当时,由,,画出的图象如下图所示:

    由图可知,,故.
    当时,由时,,画出的图象如下图所示:

    由图可知,,故.
    综上所述,成立.
    11. 设是椭圆的上顶点,若上的任意一点都满足,则的离心率的取值范围是( )
    A. B. C. D.
    【答案】C
    【解析】设,由,因为 ,,所以

    因为,当,即 时,,即 ,符合题意,由可得,即 ;
    当,即时, ,即,化简得, ,显然该不等式不成立.
    12. 设,,.则( )
    A. B. C. D.
    【答案】B
    【解析】[方法一]:

    所以;
    下面比较与大小关系.
    记,则,,
    由于
    所以当0所以在上单调递增,
    所以,即,即;
    令,则,,
    由于,在x>0时,,
    所以,即函数在[0,+∞)上单调递减,所以,即,即b综上,,
    故选:B.
    [方法二]:

    ,即函数在(1,+∞)上单调递减

    ,即函数在(1,3)上单调递增
    综上,,
    二、填空题:本题共4小题,每小题5分,共20分.
    13. 已知双曲线的一条渐近线为,则C的焦距为_________.
    【答案】4
    【解析】由渐近线方程化简得,即,同时平方得,又双曲线中,故,解得(舍去),,故焦距.
    14. 已知向量,若,则__________.
    【答案】
    【解析】因为,所以由可得,
    ,解得.
    15. 记的内角A,B,C的对边分别为a,b,c,面积为,,,则________.
    【答案】
    【解析】由题意,,
    所以,
    所以,解得(负值舍去).
    16. 以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为_________(写出符合要求的一组答案即可).
    【答案】③④(或②⑤,答案不唯一)
    【解析】选择侧视图为③,俯视图为④,

    如图所示,长方体中,,
    分别为棱的中点,
    则正视图①,侧视图③,俯视图④对应的几何体为三棱锥;
    则正视图①,侧视图②,俯视图⑤对应的几何体为三棱锥;
    三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.
    (一)必考题:共60分.
    17. 某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:
    旧设备和新设备生产产品的该项指标的样本平均数分别记为和,样本方差分别记为和.
    (1)求,,,;
    (2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果,则认为新设备生产产品的该项指标的均值较旧设备有显著提高,否则不认为有显著提高).
    【解析】(1),


    .
    (2)依题意,,,
    ,所以新设备生产产品的该项指标的均值较旧设备有显著提高.
    18. 如图,四棱锥的底面是矩形,底面,,为的中点,且.
    (1)求;
    (2)求二面角的正弦值.
    【解析】(1)[方法一]:空间坐标系+空间向量法
    平面,四边形为矩形,不妨以点为坐标原点,、、所在直线分别为、、轴建立如下图所示的空间直角坐标系,
    设,则、、、、,
    则,,
    ,则,解得,故;
    [方法二]【最优解】:几何法+相似三角形法
    如图,连结.因为底面,且底面,所以.
    又因为,,所以平面.
    又平面,所以.
    从而.
    因为,所以.
    所以,于是.
    所以.所以.
    [方法三]:几何法+三角形面积法
    如图,联结交于点N.
    由[方法二]知.
    在矩形中,有,所以,即.
    令,因为M为的中点,则,,.
    由,得,解得,所以.
    (2)[方法一]【最优解】:空间坐标系+空间向量法
    设平面的法向量为,则,,
    由,取,可得,
    设平面的法向量为,,,
    由,取,可得,

    所以,,
    因此,二面角的正弦值为.
    [方法二]:构造长方体法+等体积法
    如图,构造长方体,联结,交点记为H,由于,,所以平面.过H作的垂线,垂足记为G.
    联结,由三垂线定理可知,
    故为二面角的平面角.
    易证四边形是边长为的正方形,联结,.

    由等积法解得.
    在中,,由勾股定理求得.
    所以,,即二面角的正弦值为.
    19. 记为数列的前n项和,为数列的前n项积,已知.
    (1)证明:数列等差数列;
    (2)求的通项公式.
    【解析】(1)[方法一]:
    由已知得,且,,
    取,由得,
    由于为数列的前n项积,
    所以,
    所以,
    所以,
    由于
    所以,即,其中
    所以数列是以为首项,以为公差等差数列;
    [方法二]【最优解】:
    由已知条件知 ①
    于是. ②
    由①②得. ③
    又, ④
    由③④得.
    令,由,得.
    所以数列是以为首项,为公差的等差数列.
    [方法三]:
    由,得,且,,.
    又因为,所以,所以.
    在中,当时,.
    故数列是以为首项,为公差的等差数列.
    [方法四]:数学归纳法
    由已知,得,,,,猜想数列是以为首项,为公差的等差数列,且.
    下面用数学归纳法证明.
    当时显然成立.
    假设当时成立,即.
    那么当时,.
    综上,猜想对任意的都成立.
    即数列是以为首项,为公差的等差数列.
    (2)
    由(1)可得,数列是以为首项,以为公差的等差数列,
    ,
    ,
    当n=1时,,
    当n≥2时,,显然对于n=1不成立,
    ∴.
    20. 设函数,已知是函数的极值点.
    (1)求a;
    (2)设函数.证明:.
    【解析】(1)由,,
    又是函数的极值点,所以,解得;
    (2)[方法一]:转化为有分母的函数
    由(Ⅰ)知,,其定义域为.
    要证,即证,即证.
    (ⅰ)当时,,,即证.令,因为,所以在区间内为增函数,所以.
    (ⅱ)当时,,,即证,由(ⅰ)分析知在区间内为减函数,所以.
    综合(ⅰ)(ⅱ)有.
    [方法二] 【最优解】:转化为无分母函数
    由(1)得,,且,
    当 时,要证,, ,即证,化简得;
    同理,当时,要证,, ,即证,化简得;
    令,再令,则,,
    令,,
    当时,,单减,故;
    当时,,单增,故;
    综上所述,恒成立.
    [方法三] :利用导数不等式中的常见结论证明
    令,因为,所以在区间内是增函数,在区间内是减函数,所以,即(当且仅当时取等号).故当且时,且,,即,所以.
    (ⅰ)当时,,所以,即,所以.
    (ⅱ)当时,,同理可证得.
    综合(ⅰ)(ⅱ)得,当且时,,即.
    21. 已知抛物线的焦点为,且与圆上点的距离的最小值为.
    (1)求;
    (2)若点在上,是的两条切线,是切点,求面积的最大值.
    【解析】(1)[方法一]:利用二次函数性质求最小值
    由题意知,,设圆M上的点,则.
    所以.
    从而有.
    因为,所以当时,.
    又,解之得,因此.
    [方法二]【最优解】:利用圆的几何意义求最小值
    抛物线的焦点为,,
    所以,与圆上点的距离的最小值为,解得;
    (2)[方法一]:切点弦方程+韦达定义判别式求弦长求面积法
    抛物线的方程为,即,对该函数求导得,
    设点、、,
    直线的方程为,即,即,
    同理可知,直线的方程为,
    由于点为这两条直线的公共点,则,
    所以,点A、的坐标满足方程,
    所以,直线的方程为,
    联立,可得,
    由韦达定理可得,,
    所以,,
    点到直线的距离为,
    所以,,

    由已知可得,所以,当时,的面积取最大值.
    [方法二]最优解】:切点弦法+分割转化求面积+三角换元求最值
    同方法一得到.
    过P作y轴的平行线交于Q,则.

    P点在圆M上,则

    故当时的面积最大,最大值为.
    [方法三]:直接设直线AB方程法
    设切点A,B的坐标分别为,.
    设,联立和抛物线C的方程得整理得.
    判别式,即,且.
    抛物线C的方程为,即,有.
    则,整理得,同理可得.
    联立方程可得点P的坐标为,即.
    将点P的坐标代入圆M的方程,得,整理得.
    由弦长公式得.
    点P到直线的距离为.
    所以,
    其中,即.
    当时,.
    (二)选考题,共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.
    [选修4-4:坐标系与参数方程](10分)
    22. 在直角坐标系中,的圆心为,半径为1.
    (1)写出的一个参数方程;
    (2)过点作的两条切线.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求这两条切线的极坐标方程.
    【解析】(1)由题意,的普通方程为,
    所以的参数方程为,(为参数)
    (2)[方法一]:直角坐标系方法
    ①当直线的斜率不存在时,直线方程为,此时圆心到直线的距离为,故舍去.
    ②当切线斜率存在时,设其方程为,即.
    故,即,解得.
    所以切线方程为或.
    两条切线的极坐标方程分别为和.
    即和.
    [方法二]【最优解】:定义求斜率法
    如图所示,过点F作的两条切线,切点分别为A,B.

    在中,,又轴,所以两条切线的斜率分别和.
    故切线的方程为,,这两条切线的极坐标方程为和.
    即和.
    [选修4-5:不等式选讲](10分)
    23. 已知函数.
    (1)当时,求不等式的解集;
    (2)若,求a的取值范围.
    【解析】(1)[方法一]:绝对值的几何意义法
    当时,,表示数轴上的点到和的距离之和,
    则表示数轴上的点到和的距离之和不小于,
    当或时所对应的数轴上的点到所对应的点距离之和等于6,
    ∴数轴上到所对应的点距离之和等于大于等于6得到所对应的坐标的范围是或,
    所以的解集为.
    [方法二]【最优解】:零点分段求解法
    当时,.
    当时,,解得;
    当时,,无解;
    当时,,解得.
    综上,的解集为.
    (2)[方法一]:绝对值不等式的性质法求最小值
    依题意,即恒成立,

    当且仅当时取等号,
    ,
    故,
    所以或,
    解得.
    所以的取值范围是.
    [方法二]【最优解】:绝对值的几何意义法求最小值
    由是数轴上数x表示的点到数a表示的点的距离,得,故,下同解法一.
    [方法三]:分类讨论+分段函数法
    当时,
    则,此时,无解.
    当时,
    则,此时,由得,.
    综上,a的取值范围为.
    [方法四]:函数图象法解不等式
    由方法一求得后,构造两个函数和,
    即和,
    如图,两个函数的图像有且仅有一个交点,
    由图易知,则.
    旧设备
    9.8
    10.3
    10.0
    10.2
    9.9
    9.8
    10.0
    10.1
    10.2
    9.7
    新设备
    10.1
    10.4
    10.1
    10.0
    10.1
    10.3
    10.6
    10.5
    10.4
    10.5
    相关试卷

    2024年高考数学重难点突破讲义:2023全国乙卷(文): 这是一份2024年高考数学重难点突破讲义:2023全国乙卷(文),共18页。试卷主要包含了已知是偶函数,则,正方形的边长是2,是的中点,则等内容,欢迎下载使用。

    2024年高考数学重难点突破讲义:2023全国乙卷(理): 这是一份2024年高考数学重难点突破讲义:2023全国乙卷(理),共19页。试卷主要包含了已知是偶函数,则等内容,欢迎下载使用。

    2024年高考数学重难点突破讲义:2022全国乙卷(文): 这是一份2024年高考数学重难点突破讲义:2022全国乙卷(文),共19页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2024年高考数学重难点突破讲义:2021全国乙卷(理)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map