2024年高考数学重难点突破讲义:2022全国甲卷(理)
展开注意事项:
1.答卷前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号填写在答题卡上,并认真核准条形码上的准考证号、姓名、考场号、座位号及科目,在规定的位置贴好条形码.
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.
3.考试结束后,将本试卷和答题卡一并交回.
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1. 若,则( )
A. B. C. D.
【答案】C
【解析】
2. 某社区通过公益讲座以普及社区居民的垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如下图:
则( )
A. 讲座前问卷答题的正确率的中位数小于
B. 讲座后问卷答题的正确率的平均数大于
C. 讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差
D. 讲座后问卷答题的正确率的极差大于讲座前正确率的极差
【答案】B
【解析】讲座前中位数为,所以错;
讲座后问卷答题的正确率只有一个是个,剩下全部大于等于,所以讲座后问卷答题的正确率的平均数大于,所以B对;
讲座前问卷答题的正确率更加分散,所以讲座前问卷答题的正确率的标准差大于讲座后正确率的标准差,所以C错;
讲座后问卷答题的正确率的极差为,
讲座前问卷答题的正确率的极差为,所以错.
3. 设全集,集合,则( )
A. B. C. D.
【答案】D
【解析】由题意,,所以,
所以.
4. 如图,网格纸上绘制的是一个多面体的三视图,网格小正方形的边长为1,则该多面体的体积为( )
A. 8B. 12C. 16D. 20
【答案】B
【解析】由三视图还原几何体,如图,
则该直四棱柱的体积.
5. 函数在区间的图象大致为( )
A. B.
C. D.
【答案】A
【解析】令,
则,
所以奇函数,排除BD;
又当时,,所以,排除C.
6 当时,函数取得最大值,则( )
A. B. C. D. 1
【答案】B
【解析】因为函数定义域为,所以依题可知,,,而,所以,即,所以,因此函数在上递增,在上递减,时取最大值,满足题意,即有.
7. 在长方体中,已知与平面和平面所成的角均为,则( )
A. B. AB与平面所成的角为
C. D. 与平面所成的角为
【答案】D
【解析】如图所示:
不妨设,依题以及长方体的结构特征可知,与平面所成角为,与平面所成角为,所以,即,,解得.
对于A,,,,A错误;
对于B,过作于,易知平面,所以与平面所成角为,因为,所以,B错误;
对于C,,,,C错误;
对于D,与平面所成角为,,而,所以.D正确.
8. 沈括的《梦溪笔谈》是中国古代科技史上的杰作,其中收录了计算圆弧长度的“会圆术”,如图,是以O为圆心,OA为半径的圆弧,C是AB的中点,D在上,.“会圆术”给出的弧长的近似值s的计算公式:.当时,( )
A. B. C. D.
【答案】B
【解析】如图,连接,
因为是的中点,
所以,
又,所以三点共线,
即,
又,
所以,
则,故,
所以.
故选:B.
9. 甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为,侧面积分别为和,体积分别为和.若,则( )
A. B. C. D.
【答案】C
【解析】设母线长为,甲圆锥底面半径为,乙圆锥底面圆半径为,
则,
所以,
又,
则,
所以,
所以甲圆锥的高,
乙圆锥的高,
所以.
故选:C.
10. 椭圆的左顶点为A,点P,Q均在C上,且关于y轴对称.若直线的斜率之积为,则C的离心率为( )
A. B. C. D.
【答案】A
【解析】,
设,则,
则,
故,
又,则,
所以,即,
所以椭圆的离心率.
11. 设函数在区间恰有三个极值点、两个零点,则的取值范围是( )
A. B. C. D.
【答案】C
【解析】依题意可得,因为,所以,
要使函数在区间恰有三个极值点、两个零点,又,图象如下所示:
则,解得,即.
12. 已知,则( )
A. B. C. D.
【答案】A
【解析】因为,因为当
所以,即,所以;
设,,所以在单调递增,
则,所以,所以,所以.
二、填空题:本题共4小题,每小题5分,共20分.
13. 设向量,的夹角的余弦值为,且,,则_________.
【答案】
【解析】设与的夹角为,因为与的夹角的余弦值为,即,
又,,所以,
所以.
14. 若双曲线的渐近线与圆相切,则_________.
【答案】
【解析】双曲线的渐近线为,即,
不妨取,圆,即,所以圆心为,半径,
依题意圆心到渐近线的距离,
解得或(舍去).
15. 从正方体的8个顶点中任选4个,则这4个点在同一个平面的概率为________.
【答案】.
【解析】从正方体的个顶点中任取个,有个结果,这个点在同一个平面的有个,故所求概率.
16. 已知中,点D在边BC上,.当取得最小值时,________.
【答案】
【解析】设,
则在中,,
在中,,
所以
,
当且仅当即时,等号成立,
所以当取最小值时,.
三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.
(一)必考题:共60分.
17. 记为数列的前n项和.已知.
(1)证明:是等差数列;
(2)若成等比数列,求的最小值.
【解析】(1)因为,即①,
当时,②,
①②得,,
即,
即,所以,且,
所以是以为公差的等差数列.
(2)由(1)可得,,,
又,,成等比数列,所以,
即,解得,
所以,所以,
所以,当或时.
18. 在四棱锥中,底面.
(1)证明:;
(2)求PD与平面所成的角的正弦值.
【解析】(1)证明:在四边形中,作于,于,
因为,
所以四边形为等腰梯形,
所以,
故,,
所以,
所以,
因为平面,平面,
所以,
又,
所以平面,
又因平面,
所以;
(3)如图,以点为原点建立空间直角坐标系,
,
则,
则,
设平面的法向量,
则有,可取,
则,
所以与平面所成角的正弦值为.
19. 甲、乙两个学校进行体育比赛,比赛共设三个项目,每个项目胜方得10分,负方得0分,没有平局.三个项目比赛结束后,总得分高的学校获得冠军.已知甲学校在三个项目中获胜的概率分别为0.5,0.4,0.8,各项目的比赛结果相互独立.
(1)求甲学校获得冠军的概率;
(2)用X表示乙学校的总得分,求X的分布列与期望.
【解析】(1)设甲在三个项目中获胜的事件依次记为,所以甲学校获得冠军的概率为
.
(2)依题可知,的可能取值为,所以,
,
,
,
.
即的分布列为
期望.
20. 设抛物线的焦点为F,点,过F的直线交C于M,N两点.当直线MD垂直于x轴时,.
(1)求C的方程;
(2)设直线与C的另一个交点分别为A,B,记直线的倾斜角分别为.当取得最大值时,求直线AB的方程.
【解析】(1)
抛物线的准线为,当与x轴垂直时,点M的横坐标为p,
此时,所以,
所以抛物线C的方程为;
(2)设,直线,
由可得,,
由斜率公式可得,,
直线,代入抛物线方程可得,
,所以,同理可得,
所以
又因为直线MN、AB的倾斜角分别为,
所以,
若要使最大,则,
设,则,
当且仅当即时,等号成立,
所以当最大时,,设直线,
代入抛物线方程可得,
,所以,
所以直线.
21. 已知函数.
(1)若,求a的取值范围;
(2)证明:若有两个零点,则.
【解析】(1)的定义域为,
令,得
当单调递减
当单调递增,
若,则,即
所以的取值范围为
(2)由题知,一个零点小于1,一个零点大于1
不妨设
要证,即证
因为,即证
因为,即证
即证
即证
下面证明时,
设,
则
设
所以,而
所以,所以
所以在单调递增
即,所以
令
所以在单调递减
即,所以;
综上, ,所以.
(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.
[选修4-4:坐标系与参数方程]
22. 在直角坐标系中,曲线的参数方程为(t为参数),曲线的参数方程为(s为参数).
(1)写出的普通方程;
(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,求与交点的直角坐标,及与交点的直角坐标.
【解析】(1)因为,,所以,即的普通方程为.
(2)因为,所以,即的普通方程为,
由,即的普通方程为.
联立,解得:或,即交点坐标为,;
联立,解得:或,即交点坐标为,.
[选修4-5:不等式选讲]
23. 已知a,b,c均为正数,且,证明:
(1);
(2)若,则.
【解析】(1)证明:由柯西不等式有,
所以,
当且仅当时,取等号,
所以;
(2)证明:因为,,,,由(1)得,
即,所以,
由权方和不等式知,
当且仅当,即,时取等号,
所以.
0
10
20
30
0.16
0.44
0.34
0.06
2024年高考数学重难点突破讲义:2023全国甲卷(文): 这是一份2024年高考数学重难点突破讲义:2023全国甲卷(文),共17页。试卷主要包含了记为等差数列的前项和.若,,则, 曲线在点处的切线方程为等内容,欢迎下载使用。
2024年高考数学重难点突破讲义:2023全国甲卷(理): 这是一份2024年高考数学重难点突破讲义:2023全国甲卷(理),共18页。试卷主要包含了向量,且,则,“”是“”的等内容,欢迎下载使用。
2024年高考数学重难点突破讲义:2022全国乙卷(理): 这是一份2024年高考数学重难点突破讲义:2022全国乙卷(理),共22页。