搜索
    上传资料 赚现金
    英语朗读宝

    2024年高考数学重难点突破讲义:2022新高考II卷

    2024年高考数学重难点突破讲义:2022新高考II卷第1页
    2024年高考数学重难点突破讲义:2022新高考II卷第2页
    2024年高考数学重难点突破讲义:2022新高考II卷第3页
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年高考数学重难点突破讲义:2022新高考II卷

    展开

    这是一份2024年高考数学重难点突破讲义:2022新高考II卷,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
    1. 已知集合,则( )
    A. B. C. D.
    【答案】B
    【解析】,故,
    2. ( )
    A. B. C. D.
    【答案】D
    【解析】.
    3. 图1是中国古代建筑中的举架结构,是桁,相邻桁的水平距离称为步,垂直距离称为举,图2是某古代建筑屋顶截面的示意图.其中是举,是相等的步,相邻桁的举步之比分别为.已知成公差为0.1的等差数列,且直线的斜率为0.725,则( )
    A. 0.75B. 0.8C. 0.85D. 0.9
    【答案】D
    【解析】设,则,
    依题意,有,且,
    所以,故.
    4. 已知向量,若,则( )
    A. B. C. 5D. 6
    【答案】C
    【解析】,,即,解得.
    5. 有甲、乙、丙、丁、戊5名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻,则不同排列方式共有( )
    A. 12种B. 24种C. 36种D. 48种
    【答案】B
    【解析】因为丙丁要在一起,先把丙丁捆绑,看做一个元素,连同乙,戊看成三个元素排列,有种排列方式;为使甲不在两端,必须且只需甲在此三个元素的中间两个位置任选一个位置插入,有2种插空方式;注意到丙丁两人的顺序可交换,有2种排列方式,故安排这5名同学共有:种不同的排列方式.
    6. 若,则( )
    A. B.
    C. D.
    【答案】C
    【解析】由已知得:,
    即:,
    即:所以.
    7. 已知正三棱台的高为1,上、下底面边长分别为和,其顶点都在同一球面上,则该球的表面积为( )
    A. B. C. D.
    【答案】A
    【解析】设正三棱台上下底面所在圆面的半径,所以,即,设球心到上下底面的距离分别为,球的半径为,所以,,故或,即或,解得符合题意,所以球的表面积为.
    8. 已知函数的定义域为R,且,则( )
    A. B. C. 0D. 1
    【答案】A
    【解析】因为,令可得,,所以,令可得,,即,所以函数为偶函数,令得,,即有,从而可知,,故,即,所以函数的一个周期为.
    因为,,,,,所以
    一个周期内的.由于22除以6余4,
    所以.
    二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.
    9. 已知函数的图像关于点中心对称,则( )
    A. 在区间单调递减
    B. 在区间有两个极值点
    C. 直线是曲线的对称轴
    D. 直线是曲线的切线
    【答案】AD
    【解析】由题意得:,所以,,
    即,
    又,所以时,,故.
    对A,当时,,由正弦函数图象知在上是单调递减;
    对B,当时,,由正弦函数图象知只有1个极值点,由,解得,即为函数的唯一极值点;
    对C,当时,,,直线不是对称轴;
    对D,由得:,
    解得或,
    从而得:或,
    所以函数在点处的切线斜率为,
    切线方程为:即.
    10. 已知O为坐标原点,过抛物线焦点F的直线与C交于A,B两点,其中A在第一象限,点,若,则( )
    A. 直线的斜率为B.
    C. D.
    【答案】ACD
    【解析】
    对于A,易得,由可得点在的垂直平分线上,则点横坐标为,
    代入抛物线可得,则,则直线的斜率为,A正确;
    对于B,由斜率为可得直线的方程为,联立抛物线方程得,
    设,则,则,代入抛物线得,解得,则,
    则,B错误;
    对于C,由抛物线定义知:,C正确;
    对于D,,则为钝角,
    又,则为钝角,
    又,则,D正确.
    11. 如图,四边形为正方形,平面,,记三棱锥,,的体积分别为,则( )
    A. B.
    C. D.
    【答案】CD
    【解析】
    设,因为平面,,则,
    ,连接交于点,连接,易得,
    又平面,平面,则,又,平面,则平面,
    又,过作于,易得四边形为矩形,则,
    则,,
    ,则,,,
    则,则,,,故A、B错误;C、D正确.
    12. 若x,y满足,则( )
    A. B.
    C. D.
    【答案】BC
    【解析】因为(R),由可变形为,,解得,当且仅当时,,当且仅当时,,所以A错误,B正确;
    由可变形为,解得,当且仅当时取等号,所以C正确;
    因为变形可得,设,所以,因此
    ,所以当时满足等式,但是不成立,所以D错误.
    三、填空题:本题共4小题,每小题5分,共20分.
    13. 已知随机变量X服从正态分布,且,则____________.
    【答案】
    【解析】因为,所以,因此.
    14. 曲线过坐标原点的两条切线的方程为____________,____________.
    【答案】 ①. ②.
    【解析】因为,
    当时,设切点为,由,所以,所以切线方程为,
    又切线过坐标原点,所以,解得,所以切线方程为,即;
    当时,设切点为,由,所以,所以切线方程为,
    又切线过坐标原点,所以,解得,所以切线方程为,即.
    15. 设点,若直线关于对称的直线与圆有公共点,则a的取值范围是________.
    【答案】
    【解析】关于对称的点的坐标为,在直线上,
    所以所在直线即为直线,所以直线为,即;
    圆,圆心,半径,
    依题意圆心到直线的距离,
    即,解得,即.
    16. 已知直线l与椭圆在第一象限交于A,B两点,l与x轴,y轴分别交于M,N两点,且,则l的方程为___________.
    【答案】
    【解析】令的中点为,因为,所以,
    设,,则,,
    所以,即
    所以,即,设直线,,,
    令得,令得,即,,所以,
    即,解得或(舍去),
    又,即,解得或(舍去),
    所以直线,即;
    四、解答题:本题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.
    17. 已知为等差数列,是公比为2的等比数列,且.
    (1)证明:;
    (2)求集合中元素个数.
    【解析】(1)设数列的公差为,所以,,即可解得,,所以原命题得证.
    (2)由(1)知,,所以,即,亦即,解得,所以满足等式的解,故集合中的元素个数为.
    18. 记的内角A,B,C的对边分别为a,b,c,分别以a,b,c为边长的三个正三角形的面积依次为,已知.
    (1)求的面积;
    (2)若,求b.
    【解析】(1)由题意得,则,
    即,由余弦定理得,整理得,则,又,
    则,,则;
    (2)由正弦定理得:,则,则,.
    19. 在某地区进行流行病学调查,随机调查了100位某种疾病患者的年龄,得到如下的样本数据的频率分布直方图:
    (1)估计该地区这种疾病患者的平均年龄(同一组中的数据用该组区间的中点值为代表);
    (2)估计该地区一位这种疾病患者的年龄位于区间的概率;
    (3)已知该地区这种疾病的患病率为,该地区年龄位于区间的人口占该地区总人口的.从该地区中任选一人,若此人的年龄位于区间,求此人患这种疾病的概率.(以样本数据中患者的年龄位于各区间的频率作为患者的年龄位于该区间的概率,精确到0.0001).
    【解析】(1)平均年龄
    (岁).
    (2)设{一人患这种疾病的年龄在区间},所以

    (3)设任选一人年龄位于区间,任选一人患这种疾病,
    则由条件概率公式可得

    20. 如图,是三棱锥的高,,,E是的中点.
    (1)证明:平面;
    (2)若,,,求二面角的正弦值.
    【解析】(1)证明:连接并延长交于点,连接、,
    因为是三棱锥的高,所以平面,平面,
    所以、,
    又,所以,即,所以,
    又,即,所以,,
    所以
    所以,即,所以为的中点,又为的中点,所以,
    又平面,平面,
    所以平面
    (2)过点作,如图建立平面直角坐标系,
    因为,,所以,
    又,所以,则,,
    所以,所以,,,,所以,
    则,,,
    设平面的法向量为,则,令,则,,所以;
    设平面的法向量为,则,令,则,,所以;
    所以
    设二面角为,由图可知二面角为钝二面角,
    所以,所以
    故二面角的正弦值为;
    21. 已知双曲线的右焦点为,渐近线方程为.
    (1)求C的方程;
    (2)过F的直线与C的两条渐近线分别交于A,B两点,点在C上,且.过P且斜率为的直线与过Q且斜率为的直线交于点M.从下面①②③中选取两个作为条件,证明另外一个成立:
    ①M在上;②;③.
    注:若选择不同的组合分别解答,则按第一个解答计分.
    【解析】(1)右焦点为,∴,∵渐近线方程为,∴,∴,∴,∴,∴.
    ∴C的方程为:;
    (2)由已知得直线的斜率存在且不为零,直线的斜率不为零,
    若选由①②推③或选由②③推①:由②成立可知直线的斜率存在且不为零;
    若选①③推②,则为线段的中点,假若直线的斜率不存在,则由双曲线的对称性可知在轴上,即为焦点,此时由对称性可知、关于轴对称,与从而,已知不符;
    总之,直线的斜率存在且不为零.
    设直线的斜率为,直线方程为,
    则条件①在上,等价于;
    两渐近线方程合并为,
    联立消去y并化简整理得:
    设,线段中点,则,
    设,
    则条件③等价于,
    移项并利用平方差公式整理得:

    ,即,
    即;
    由题意知直线的斜率为, 直线的斜率为,
    ∴由,
    ∴,
    所以直线的斜率,
    直线,即,
    代入双曲线的方程,即中,
    得:,
    解得的横坐标:,
    同理:,

    ∴,
    ∴条件②等价于,
    综上所述:
    条件①在上,等价于;
    条件②等价于;
    条件③等价于;
    选①②推③:
    由①②解得:,∴③成立;
    选①③推②:
    由①③解得:,,
    ∴,∴②成立;
    选②③推①:
    由②③解得:,,∴,
    ∴,∴①成立.
    22. 已知函数.
    (1)当时,讨论的单调性;
    (2)当时,,求a的取值范围;
    (3)设,证明:.
    【解析】(1)当时,,则,
    当时,,当时,,
    故的减区间为,增区间为.
    (2)设,则,
    又,设,
    则,
    若,则,
    因为为连续不间断函数,
    故存在,使得,总有,
    故在为增函数,故,
    故在为增函数,故,与题设矛盾.
    若,则,
    下证:对任意,总有成立,
    证明:设,故,
    故在上为减函数,故即成立.
    由上述不等式有,
    故总成立,即在上为减函数,
    所以.
    当时,有,
    所以在上为减函数,所以.
    综上,.
    (3)取,则,总有成立,
    令,则,
    故即对任意的恒成立.
    所以对任意的,有,
    整理得到:,

    ,故不等式成立.

    相关试卷

    2024年高考数学重难点突破讲义:2023新高考I卷:

    这是一份2024年高考数学重难点突破讲义:2023新高考I卷,共19页。试卷主要包含了设椭圆,的离心率分别为,,记为数列的前项和,设甲,已知,,则等内容,欢迎下载使用。

    2024年高考数学重难点突破讲义:2023新高考II卷:

    这是一份2024年高考数学重难点突破讲义:2023新高考II卷,共17页。试卷主要包含了在复平面内,对应的点位于,设集合,若,则,若为偶函数,则,已知为锐角,,则等内容,欢迎下载使用。

    2024年高考数学重难点突破讲义:2022新高考I卷:

    这是一份2024年高考数学重难点突破讲义:2022新高考I卷,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map