搜索
    上传资料 赚现金
    英语朗读宝

    (人教A版2019选择性必修第一册)高二数学《考点题型 技巧》精讲与精练高分突破 第三章 圆锥曲线基础达标与能力提升必刷检测卷(考试版)【附答案详解】

    (人教A版2019选择性必修第一册)高二数学《考点题型 技巧》精讲与精练高分突破 第三章 圆锥曲线基础达标与能力提升必刷检测卷(考试版)【附答案详解】第1页
    (人教A版2019选择性必修第一册)高二数学《考点题型 技巧》精讲与精练高分突破 第三章 圆锥曲线基础达标与能力提升必刷检测卷(考试版)【附答案详解】第2页
    (人教A版2019选择性必修第一册)高二数学《考点题型 技巧》精讲与精练高分突破 第三章 圆锥曲线基础达标与能力提升必刷检测卷(考试版)【附答案详解】第3页
    还剩3页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    (人教A版2019选择性必修第一册)高二数学《考点题型 技巧》精讲与精练高分突破 第三章 圆锥曲线基础达标与能力提升必刷检测卷(考试版)【附答案详解】

    展开

    这是一份(人教A版2019选择性必修第一册)高二数学《考点题型 技巧》精讲与精练高分突破 第三章 圆锥曲线基础达标与能力提升必刷检测卷(考试版)【附答案详解】,共6页。
    0第三章:圆锥曲线基础达标与能力提升必刷检测卷一、单项选择题:本题共8小题,每小题满分5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求,选对得5分,选错得0分.一、单选题1.(2022·全国高二)过点(-3,2)且与有相同焦点的椭圆方程是( )A. B.C. D.2.(2022·全国高二)已知双曲线的左焦点为F,离心率为,若经过F和两点的直线平行于双曲线的一条渐近线,则双曲线的方程为( )A. B. C. D.3.(2023·全国高二课时练习)已知A(3,2),点F为抛物线的焦点,点P在抛物线上移动,为使取得最小值,则点P的坐标为( )A.(0,0) B.(2,2) C. D.4.(2023·江西科技学院附属中学高二月考(文))椭圆的焦点为F1、F2,点P为椭圆上一动点,当∠F1PF2为钝角时,点P的横坐标的取值范围是( )A. B.C. D.5.(2023·江苏南京·高二月考)已知焦点为,的双曲线的离心率为,点为上一点,且满足,若的面积为,则双曲线的实轴长为( )A.1 B. C.2 D.6.(2023·福建省宁化第一中学高二月考)已知是椭圆:的左焦点,经过原点的直线与椭圆交于两点,若,且,则椭圆的离心率为( )A. B. C. D.7.(2023·江西科技学院附属中学高二月考(理))已知双曲线的左、右焦点分别为,过作圆的切线,交双曲线右支于点M,若,则双曲线的渐近线方程为( )A. B. C. D.8.(2023·全国高二课时练习)已知双曲线:与直线交于,两点,点为上一动点,记直线,的斜率分别为,,的左、右焦点分别为,.若,且的焦点到渐近线的距离为1,则( )A.B.的离心率为C.若,则的面积为2D.若的面积为,则为钝角三角形多项选择题:本题共4小题,每小题满分5分,共20分. 在每小题给出的四个选项中,有多项符合题目要求。全部选对得5分,部分选对得2分,有选错的得0分.9.(2023·全国高二专题练习)在平面直角坐标系xOy中,过抛物线x2=2y的焦点的直线l与抛物线的两个交点A(x1,y1),B(x2,y2),则( )A.y1y2=B.以AB为直径的圆与直线相切C.OA+OB的最小值D.经过点B与x轴垂直的直线与直线OA交点一定在定直线上10.(2023·江苏鼓楼·南京市第二十九中学高二月考)已知双曲线的焦点在圆上,圆与双曲线的渐近线在第一、二象限分别交于点两点,若点满足(为坐标原点),下列说法正确的有( )A.双曲线的虚轴长为4 B.双曲线的离心率为C.直线与双曲线没有交点 D.的面积为811.(2023·全国高二课时练习)(多选)已知方程表示曲线,则( )A.当时,曲线一定是椭圆B.当或时,曲线一定是双曲线C.若曲线是焦点在轴上的椭圆,则D.若曲线是焦点在轴上的双曲线,则12.(2023·长春市第二中学高二月考(理))已知椭圆:的左右焦点分别为、,长轴长为4,点在椭圆内部,点在椭圆上,则以下说法正确的是( )A.离心率的取值范围为B.当离心率为时,的最大值为C.存在点使得D.的最小值为1填空题:本题共4小题,每小题5分,共20分。13.(2023·全国高二课时练习)斜率为的直线过抛物线C:y2=4x的焦点,且与C交于A,B两点,则=________.14.(2023·全国高二单元测试)已知双曲线:的右顶点为,以为圆心,为半径作圆,圆与双曲线的一条渐近线于交、两点,若,则的离心率为__________.15.(2020·天津市第五十五中学高二期中)已知椭圆的左焦点为,点在椭圆上且在轴的上方,若线段的中点在以原点为圆心,为半径的圆上,则直线的斜率是_______.16.(2023·安徽金安·六安一中高二开学考试(文))已知椭圆与双曲线共焦点,F1、F2分别为左、右焦点,曲线与在第一象限交点为,且离心率之积为1.若,则该双曲线的离心率为____________.四、解答题:本题共6小题,共70分。解答应写出文字说明、证明过程或演算步骤。17.(2020·江西上高二中高二月考(文))已知抛物线C:y2=3x的焦点为F,斜率为的直线l与C的交点为A,B,与x轴的交点为P.(1)若|AF|+|BF|=4,求l的方程;(2)若,求|AB|.18.(2020·安徽金安·六安一中高二月考(文))已知是椭圆的两个焦点,P为C上一点,O为坐标原点.(1)若为等边三角形,求C的离心率;(2)如果存在点P,使得,且的面积等于16,求b的值和a的取值范围.19.(2020·江西上高二中高二月考(文))已知椭圆的离心率,原点到过点,的直线的距离是.(1)求椭圆的方程;(2)如果直线交椭圆于不同的两点,,且,都在以为圆心的圆上,求的值.20.(2023·佛山市南海区狮山高级中学高二月考)已知焦点在轴上的椭圆:,短轴长为,椭圆左顶点到左焦点的距离为.(1)求椭圆的标准方程;(2)如图,已知点,点是椭圆的右顶点,直线与椭圆交于不同的两点 ,两点都在轴上方,且.证明直线过定点,并求出该定点坐标.21.(2023·沙坪坝·重庆一中高二月考)已知椭圆的左右顶点是双曲线的顶点,且椭圆的上顶点到双曲线的渐近线的距离为.(1)求椭圆的方程;(2)若直线与相交于两点,与相交于两点,且,求的取值范围.22.(2023·深州长江中学高二月考)已知直线:与轴交于点,且,其中为坐标原点,为抛物线:的焦点.(1)求拋物线的方程;(2)若直线与抛物线相交于,两点(在第一象限),直线,分别与抛物线相交于,两点(在的两侧),与轴交于,两点,且为中点,设直线,的斜率分别为,,求证:为定值;(3)在(2)的条件下,求的面积的取值范围.

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map