2023-2024学年山东省青岛市崂山区育才中学九年级(上)期末数学试题
展开1.已知,那么下列式子中一定成立的是( )
A.3a=5bB.5a=3bC.a=5bD.ab=15
2.如果在同一时刻的阳光下,小莉的影子比小玉的影子长,那么在同一路灯下( )
A.小莉的影子比小玉的影子长 B.小莉的影子比小玉的影子短
C.小莉的影子和小玉的影子一样长D.无法判断谁的影子长
3.班级元旦晚会上,主持人给大家带来了一个有奖竞猜题,他在一个不透明的袋子中放了若干个形状大小完全相同的白球,想请大家想办法估计出袋中白球的个数.数学课代表小明是这样来估计的:他先往袋中放入10个形状大小与白球相同的红球,混匀后再从袋子中随机摸出20个球,发现其中有4个红球.如果设袋中有白球x个,
根据小明的方法用来估计袋中白球个数的方程是( )
A.= B.= C.= D.=
4.已知A(﹣2,a),B(﹣1,b),C(3,c)都在反比例函数的图象上,则a,b,c的大小关系用“<”连接的结果为( )
A.b<a<cB.c<b<aC.a<b<cD.c<a<b
5.某校八年级组织一次篮球赛,各班均组队参赛,赛制为单循环形式(每两班之间都赛一场),共需安排15场比赛,则八年级班级的个数为( )
A.5B.6C.7D.8
6.如图,四边形ABCD内接于⊙O,AC,BD为对角线,BD经过圆心O.若∠BAC=40°,则∠DBC的度数为( )
A.40°B.50°C.60°D.70°
7.如图,某公园入口处原有三级台阶,每级台阶高为18cm,深为30cm,为方便残疾人士,拟将台阶改为斜坡,设台阶的起点为A,斜坡的起始点为C,现设计斜坡BC的坡度i=1:5,则AC的长度是( )cm.
A.210B.120C.504D.60
8.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0;②9a+3b+c<0;
③b2<4ac;④2c<3b;⑤a+b>m(am+b)(m≠1).其中正确的结论有( )
A.1个B.2个C.3个D.4个
二、填空题(本题共7小题,每小题3分,共21分)
9.已知α、β均为锐角,且满足|sinα﹣|+=0,则α+β= .
10.如图所示是一个几何体的三视图,若这个几何体的体积是6,则它的表面积是 .
11.如图是一幢建筑物和一根旗杆在一天中四个不同时刻的影子.将四幅图按先后顺序排列应为 .
12.如图,四边形ABCD与四边形EFGH位似,其位似中心为点O,且=,则= .
13.如图,在平面直角坐标系中,四边形OABC是矩形,四边形ADEF是正方形,点A,D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B,E在反比例函数y=(x>0,k>0)的图象上,若正方形ADEF的面积为4,且BF=AF,则k的值为 .
14.如图,在正方形ABCD的边长为6,对角线AC、BD相交于点O,点E、F分别在BC、CD的延长线上,且CE=3,DF=2,G为EF的中点,连接OE,交CD于点H,连接GH,则GH的长为 .
15.如图(1)所示,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P沿折线BE﹣ED﹣DC运动到点C时停止,点Q沿BC运动到点C时停止,它们运动的速度都是1cm/秒.设P、Q同发t秒时,△BPQ的面积为ycm2.已知y与t的函数关系图象如图(2)(曲线OM为抛物线的一部分),则下列结论:①AD=BE=5;②cs∠ABE=;③当0<t≤5时,y=t2;④当t=秒时,△ABE∽△QBP;其中正确的结论是 (填序号).
三、作图题(本题满分4分)
16.用圆规、直尺作图,不写作法,但要保留作图痕迹.
已知:线段c,直线l及l外一点A.
求作:矩形ABCD,使边BC在直线l上,对角线AC=c.
四、解答题(本题共8道小题,满分71分)
17.计算:
(1)2x2﹣4x+=0(配方法);
(2)3(x﹣2)2=x2﹣4(用适当方法).
18.小明和小亮用图中的转盘做游戏:分别转动转盘两次,若两次数字之差(大数减小数)等于2,小明胜;若两次数字之差(大数减小数)等于1,则小亮胜,这个游戏对双方公平吗?说说你的理由.(列表或画树状图说明)
19.某商店购进一批单价为20元的日用商品,如果以单价30元销售,那么一个月内可以售出400件.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.售价为多少元时,才能在一个月内获得最大利润?
20.如图1,将一长方体放置于一水平玻璃桌面上,按不同的方式摆放,记录桌面所受压强与受力面积的关系如下表所示:
根据表中数据,求出压强P(Pa)关于受力面积S(m2)的函数表达式及a的值.
(2)如图2,将另一长,宽,高分别为60cm,20cm,10cm,且与原长方体相同重量的长方体放置于该水平玻璃桌面上.若玻璃桌面能承受的最大压强为2000Pa,问:这种摆放方式是否安全?请判断并说明理由.
21.阅读与计算,请阅读以下材料,完成相应的任务.
角平分线分线段成比例定理:
如图1,在△ABC中,AD平分∠BAC,则.
下面是这个定理的部分证明过程.
证明:如图2,过C作CE∥DA,交BA的延长线于点E.
任务一:请按照上面的证明思路,写出该证明的剩余部分;
任务二:如图3,△ABC中,E是BC中点,AD是∠BAC的平分线,EF∥AD交AC于F.若AB=11,AC=15,直接写出线段FC的长.
22.拓展小组研制的智能操作机器人,如图1,水平操作台为l,底座AB固定,高AB为50cm,连杆BC长度为70cm,手臂CD长度为60cm.点B,C是转动点,且AB,BC与CD始终在同一平面内.
(1)转动连杆BC,手臂CD,使∠ABC=143°,CD∥l,如图2,求手臂端点D离操作台l的高度DE的长(精确到1cm,参考数据:sin53°≈0.8,cs53°≈0.6).
(2)物品在操作台l上,距离底座A端110cm的点M处,转动连杆BC,手臂CD,手臂端点D能否碰到点M?请说明理由.
23.如图,在△ABC中,AD是BC边上的中线,B是AD的中点,过点A作AF∥BC,交BE的延长线于点F,连接CF.
(1)求证:四边形ADCF是平行四边形;
(2)若AB=AC,∠BAC=90°,试判断四边形ADCF的形状,并证明你的结论.
24.公路上正在行驶的甲车,发现前方30m处沿同一方向行驶的乙车后,为了行驶安全,开始减速,减速后甲车行驶的路程s(单位:m)、速度v(单位:m/s)与时间t(单位:s)的关系分别可以用二次函数和一次函数表示,其图象如图所示.
(1)当甲车减速至6m/s时,它行驶的路程是多少?
(2)若乙车以10m/s的速度匀速行驶,当时间t在什么范围时,两车间的距离不超过25.5米?
25.在平面直角坐标系中,O为原点,△OAB是等腰直角三角形,∠OBA=90°,BO=BA,顶点A(4,0),点B在第一象限,矩形OCDE的顶点E(﹣,0),点C在y轴的正半轴上,点D在第二象限,射线DC经过点B.将矩形OCDE沿x轴向右平移,得到矩形O′C′D′E′,点O,C,D,E的对应点分别为O′,C′,D′,E′,设OO′=t,矩形O′C′D′E′与△OAB重叠部分的面积为S.
(1)如图①,求点B、C、D的坐标.
(2)如图②,当点E′在x轴正半轴上,且矩形O′C′D′E′与△OAB重叠部分为四边形时,
D′E′与OB相交于点F,试用含有t的式子表示S.
(3)在(2)问的条件下,是否存在某一时刻t,使得矩形O′C′D′E′与△OAB重叠部分的面积为S与△OAB的面积比为23:32?若存在,求出t的值,若不存在,请说明理由.
(4)当<t<4时,求S的最大值(直接写出结果即可).
备用图 备用图
桌面所受压强P(Pa)
400
500
800
1000
1250
受力面积S(m2)
0.5
0.4
a
0.2
0.16
山东省青岛市崂山区崂山区育才学校2023-2024学年八年级上学期期末数学试题: 这是一份山东省青岛市崂山区崂山区育才学校2023-2024学年八年级上学期期末数学试题,共8页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
2023-2024学年山东省青岛市黄岛区、西海岸新区、崂山区育才中学九年级(上)期末数学试卷(含解析): 这是一份2023-2024学年山东省青岛市黄岛区、西海岸新区、崂山区育才中学九年级(上)期末数学试卷(含解析),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
山东省青岛市崂山区2023-2024学年九年级上学期期末数学试题: 这是一份山东省青岛市崂山区2023-2024学年九年级上学期期末数学试题,共29页。