年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2022-2023学年广东省茂名市信宜市高一(下)期末数学试卷(含详细答案解析)

    2022-2023学年广东省茂名市信宜市高一(下)期末数学试卷(含详细答案解析)第1页
    2022-2023学年广东省茂名市信宜市高一(下)期末数学试卷(含详细答案解析)第2页
    2022-2023学年广东省茂名市信宜市高一(下)期末数学试卷(含详细答案解析)第3页
    还剩11页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022-2023学年广东省茂名市信宜市高一(下)期末数学试卷(含详细答案解析)

    展开

    这是一份2022-2023学年广东省茂名市信宜市高一(下)期末数学试卷(含详细答案解析),共14页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。
    1.复数z=1−2i1−i(i为虚数单位)在复平面上对应的点位于( )
    A. 第一象限B. 第二象限C. 第三象限D. 第四象限
    2.某单位有职工75人,其中青年职工35人,中年职工25人,老年职工15人,为了了解该单位职工的健康情况,用分层随机抽样的方法从中抽取样本,若样本容量为15,则样本中的青年职工人数为( )
    A. 7B. 15C. 25D. 35
    3.平行四边形ABCD的两条对角线相交于点M,且AB=a,AD=b,则MB=( )
    A. 12(b−a)B. 12(a−b)C. 12(a+b)D. −12(a+b)
    4.数据1,2,3,4,5,6,7,8,9的80%分位数为( )
    A. 7B. 7.2C. 7.5D. 8
    5.m,n是两条不同直线,α,β是两个不同的平面,则下列说法正确的是( )
    A. 若m//α,n//α,则m//nB. 若m//n,n//α,则m//α
    C. 若m⊥α,α⊥β,则m//βD. 若n⊥α,n⊥β,则α//β
    6.某学校组织高一学生参加数学测试,现将学生成绩整理并做出频率分布直方图如图所示,其中数据的分组依次为[20,40),[40,60),[60,80),[80,100].若高于60分的人数是350,则高一学生人数为( )
    A. 1000B. 750C. 500D. 250
    7.已知α是第三象限角,sinα=−513,则cs(π−α)=( )
    A. −1213B. 1213C. −513D. 513
    8.在正方体ABCD−A1B1C1D1中,直线A1B和平面A1DCB1所成角的大小为( )
    A. π6B. π4C. π3D. π2
    二、多选题:本题共4小题,共20分。在每小题给出的选项中,有多项符合题目要求。全部选对的得5分,部分选对的得2分,有选错的得0分。
    9.下列命题正确的是( )
    A. 不共线的三点确定一个平面
    B. 平行于同一条直线的两条直线平行
    C. 经过两条平行直线,有且只有一个平面
    D. 如果空间中两个角的两条边分别对应平行,那么这两个角一定相等
    10.为评估一种农作物的种植效果,选了6块地作试验田.这6块地的亩产量(单位:kg)分别为x1,x2,…,x6,其中x1是最小值,x6是最大值,则( )
    A. x2,x3,x4,x5的平均数等于x1,x2,…,x6的平均数
    B. x2,x3,x4,x5的中位数等于x1,x2,…,x6的中位数
    C. x2,x3,x4,x5的标准差不小于x1,x2,…,x6的标准差
    D. x2,x3,x4,x5的极差不大于x1,x2,…,x6的极差
    11.下列关于向量的命题,正确的有( )
    A. 若a≠0,a⋅b=a⋅c,则b=c
    B. (a⋅b)⋅c=a⋅(b⋅c)对任意向量a,b,c都成立
    C. 对任一向量a,有a2=|a|2
    D. 对于任意两个向量a和b,有|a+b|≤|a|+|b|
    12.已知函数f(x)=sin2x+ 3sinxcsx−12,则下列结论正确的有( )
    A. f(x)的最小正周期为π
    B. 点(π3,0)是f(x)的图象的一个对称中心
    C. 将f(x)的图象向右平移5π12个单位得到一个奇函数的图象
    D. 若函数y=f(tx)(t>0)在[0,π]上有且仅有两个零点,则t∈[712,1312)
    三、填空题:本题共4小题,每小题5分,共20分。
    13.已知向量a=(2,4),b=(k,6),若a//b,则k=______.
    14.已知球的体积为36π,球的表面积是______.
    15.已知tanα=2,则sinα+csαsinα−csα=__________.
    16.函数y=cs2x−3csx+2的最小值为______.
    四、解答题:本题共6小题,共70分。解答应写出文字说明,证明过程或演算步骤。
    17.(本小题10分)
    解决下列问题:
    (1)已知复数z=(m2−5m+6)+(m2−3m)i(m∈R),若z是实数,求m的值;
    (2)先求i1,i2,i3,i4,i5,i6,i7,i8的值,归纳规律后,请你直接写出i1+i2+i3+⋅⋅⋅+i2022+i2023的值.
    18.(本小题12分)
    已知不共线的两个平面向量a,b满足|a|=3,|b|=4.
    (1)若a与b的夹角θ=π3,求|a+b|的值;
    (2)若(a+kb)⊥(a−kb),求实数k的值.
    19.(本小题12分)
    如图,某几何体的下部分是长、宽均为8,高为3的长方体,上部分是侧棱长都相等且高为3的四棱锥,求:
    (1)该几何体的体积;
    (2)该几何体的表面积.
    20.(本小题12分)
    已知α、β都为锐角,且sinα= 55,csβ= 1010.
    (1)求sin(α−β)的值;
    (2)求tan(2α+2β)的值.
    21.(本小题12分)
    如图,在直三棱柱ABC−A1B1C1中,A1B1=A1C1,D,E分别是棱BC,CC1上的点(点D 不同于点C),且AD⊥DE,F为B1C1的中点.求证:
    (1)平面ADE⊥平面BCC1B1;
    (2)直线A1F//平面ADE.
    22.(本小题12分)
    设△ABC的内角A,B,C的对边分别为a,b,c.已知2acsC=2b+c.
    (1)求A的值;
    (2)若△ABC的面积S= 32a,求a的最小值.
    答案和解析
    1.【答案】D
    【解析】解:∵z=1−2i1−i=(1−2i)(1+i)(1−i)(1+i)=3−i2=32−i2,
    ∴复数在复平面对应的点的坐标是(32,−12)
    ∴它对应的点在第四象限,
    故选:D.
    把所给的复数先进行复数的除法运算,分子和分母同乘以分母的共轭复数,整理后得到最简形式,写出复数在复平面上对应的点的坐标,根据坐标的正负得到所在的象限.
    判断复数对应的点所在的位置,只要看出实部和虚部与零的关系即可,把所给的式子展开变为复数的代数形式,得到实部和虚部的取值范围,得到结果.
    2.【答案】A
    【解析】【分析】
    本题考查了分层随机抽样方法的应用问题,解题时应根据抽取样本的比例是相同的,求出各层抽取的数据,属于基础题.
    根据分层随机抽样方法的特点,各层抽取样本的比例是相同的,从而求出答案.
    【解答】
    解:根据分层随机抽样方法的特点,抽取样本的比例是1575=15,
    ∴应从青年职工中抽取的人数为35×15=7.
    故选:A.
    3.【答案】B
    【解析】解:如图所示,
    在平行四边形ABCD中,MB=12DB=12(AB−AD)=12(a−b).
    故选:B.
    由向量的线性运算,结合平行四边形的结构特征,把MB用a,b表示.
    本题主要考查平面向量的基本定理,属于基础题.
    4.【答案】D
    【解析】【分析】
    本题考查了百分位数的求解,属于基础题.
    利用9×80%=7.2,进而可以求解.
    【解答】
    解:因为9×80%=7.2,
    故数据1,2,3,4,5,6,7,8,9的第80百分位数为8,
    故选:D.
    5.【答案】D
    【解析】解:根据题意,依次分析选项:
    对于A,平行于同一个平面的两条直线可以平行、相交或异面,A错误;
    对于B,m可能在平面α内,B错误;
    对于C,m可能在平面β内,C错误;
    对于D,垂直于同一直线的两个平面平行,D正确;
    故选:D.
    根据题意,依次分析选项是否正确,综合可得答案.
    本题考查空间直线、平面间的位置关系,注意线面平行、垂直的性质以及判断方法,属于基础题.
    6.【答案】C
    【解析】解:由频率分布直方图得高于60分的频率为:
    (0.020+0.015)×20=0.7,
    ∵高于60分的人数是350人,
    ∴高一学生人数是:3500.7=500.
    故选:C.
    由频率分布直方图求出高于60分的频率,再由高于60分的人数是350人,即可求出高一学生人数.
    本题主要考查了频率分布直方图的应用,考查运算求解能力,是基础题.
    7.【答案】B
    【解析】解:因α是第三象限角,sinα=−513,则csα=− 1−sin2α=−1213.
    故cs(π−α)=−csα=1213.
    故选:B.
    由同角三角函数关系结合诱导公式可得答案.
    本题主要考查三角函数的诱导公式,属于基础题.
    8.【答案】A
    【解析】解:记B1C∩BC1=O,则OB⊥B1C,连接A1O,如图所示,
    CD⊥平面BCC1B1,OB⊂平面BCC1B1,则CD⊥OB,
    B1C∩CD=C,B1C⊂平面A1DCB1,CD⊂平面A1DCB1,则OB⊥平面A1DCB1,
    由线面角的定义可知,直线A1B和平面A1DCB1所成角即为∠BA1O
    不妨设正方体的棱长为1,则A1B= 2,OB=12BC1= 22,
    所以sin∠BA1O=OBA1B=12,则∠BA1O=π6,
    即直线A1B和平面A1DCB1所成角的大小为π6.
    故选:A.
    连接BC1交B1C于点O,再连接A1O,可证OB⊥平面A1DCB1,所以直线A1B和平面A1DCB1所成角即为∠BA1O,再利用直角三角形求角的正弦值,可得角的大小.
    本题主要考查直线与平面所成角的求法,考查运算求解能力,属于中档题.
    9.【答案】ABC
    【解析】解:根据题意,依次分析选项:
    对于A,由空间中不共线的三点可以确定唯一一个平面,可知A正确;
    对于B,由平行公理可得平行于同一条直线的两条直线平行,可知B正确;
    对于C,由两条相互平行的直线能确定一个平面,可知C选项正确;
    对于D,如果空间中两个角的两条边分别对应平行,那么这两个角相等或互补,可知D错误;
    故选:ABC.
    根据平面的确定情况及点线面的位置关系直接判断即可得到答案.
    本题考查平面的基本性质,涉及空间直线平行的性质,属于基础题.
    10.【答案】BD
    【解析】解:对于选项A:设x2,x3,x4,x5的平均数为m,x1,x2,⋅⋅⋅,x6的平均数为n,
    则n−m=x1+x2+x3+x4+x5+x66−x2+x3+x4+x54=2(x1+x6)−(x5+x2+x3+x4)12,
    因为没有确定2(x1+x6),x5+x2+x3+x4的大小关系,所以无法判断m,n的大小,
    例如:1,2,3,4,5,6,可得m=n=3.5;
    例如1,1,1,1,1,7,可得m=1,n=2,∴mn;故A错误;
    对于选项C:因为x1是最小值,x6是最大值,
    则x2,x3,x4,x5的波动性不大于x1,x2,⋅⋅⋅,x6的波动性,即x2,x3,x4,x5的标准差不大于x1,x2,⋅⋅⋅,x6的标准差,
    例如:2,4,6,8,10,12,则平均数n=16(2+4+6+8+10+12)=7,
    标准差s1= 16[(2−7)2+(4−7)2+(6−7)2+(8−7)2+(10−7)2+(12−7)2]= 1053,
    4,6,8,10,则平均数m=14(4+6+8+10)=7,
    标准差s2= 14[(4−7)2+(6−7)2+(8−7)2+(10−7)2]= 5,
    显然 1053> 5,即s1>s2;故C错误;
    对于选项B:不妨设x1≤x2≤x3≤x4≤x5≤x6,
    可知x2,x3,x4,x5的中位数等于x1,x2,⋅⋅⋅,x6的中位数均为x3+x42,故B正确;
    对于选项D:不妨设x1≤x2≤x3≤x4≤x5≤x6,
    则x6−x1≥x5−x2,当且仅当x1=x2,x5=x6时,等号成立,故D正确;
    故选:BD.
    根据题意结合平均数、中位数、标准差以及极差的概念逐项分析判断.
    本题考查平均数、中位数、标准差以及极差的概念,属于基础题.
    11.【答案】CD
    【解析】解:对于A,若a≠0,a⋅b=a⋅c,则a⋅(b−c)=0,所以a⊥(b−c)或b=c,故A错误;
    对于B,向量数量积运算不满足交换律,故B错误;
    对于C,对任一向量a,有a2=|a|2cs0=|a|2,故C正确;
    对于D,对于任意两个向量a和b,有|a+b|2=|a|2+|b|2+2a⋅b≤|a|2+|b|2+2|a|⋅|b|=(|a|+|b|)2,
    所以|a+b|≤|a|+|b|,故D正确.
    故选:CD.
    根据向量的运算律可判断AB;根据向量数量积公式可判断CD.
    本题主要考查平面向量的数量积运算,考查转化能力,属于中档题.
    12.【答案】ACD
    【解析】解:f(x)=sin2x+ 3sinxcsx−12=1−cs2x2+ 32sin2x−12=sin(2x−π6),
    A,函数的最小正周期为T=2π2=π,故A正确;
    B,f(π3)=sin(2×π3−π6)=1≠0,点(π3,0)不是f(x)的图象的一个对称中心,故B错误;
    C,将f(x)的图象向右平移5π12个单位得到函数y=sin[2(x−5π12)−π6]=−sin2x为奇函数,故C正确;
    D,y=f(tx)=sin(2tx−π6)(t>0),当x∈[0,π],2tx−π6∈[−π6,2tπ−π6],
    若函数有且仅有两个零点,则π≤2tπ−π6

    相关试卷

    2022-2023学年广东省茂名市高二(下)期末数学试卷(含详细答案解析):

    这是一份2022-2023学年广东省茂名市高二(下)期末数学试卷(含详细答案解析),共18页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。

    2022-2023学年广东省肇庆市高一(下)期末数学试卷(含详细答案解析):

    这是一份2022-2023学年广东省肇庆市高一(下)期末数学试卷(含详细答案解析),共17页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。

    2022-2023学年广东省湛江市高一(下)期末数学试卷(含详细答案解析):

    这是一份2022-2023学年广东省湛江市高一(下)期末数学试卷(含详细答案解析),共19页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map