终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    备战2024年中考数学二轮专题复习真题演练之二次函数(4) (解析)

    立即下载
    加入资料篮
    备战2024年中考数学二轮专题复习真题演练之二次函数(4) (解析)第1页
    备战2024年中考数学二轮专题复习真题演练之二次函数(4) (解析)第2页
    备战2024年中考数学二轮专题复习真题演练之二次函数(4) (解析)第3页
    还剩62页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    备战2024年中考数学二轮专题复习真题演练之二次函数(4) (解析)

    展开

    这是一份备战2024年中考数学二轮专题复习真题演练之二次函数(4) (解析)试卷主要包含了选择题,四象限D.第一,填空题等内容,欢迎下载使用。
    一、选择题
    1.(2023·大连)已知抛物线y=x2−2x−1,则当0≤x≤3时,函数的最大值为( )
    A.−2B.−1C.0D.2
    【答案】D
    【解析】【解答】解:∵y=x2-2x-1=(x-1)2-2,
    ∴抛物线开口向上,当x1时,y随x的增大而增大.
    当x=0时,y=-1;当x=3时,y=2,
    ∴函数的最大值为2.
    故答案为:D.
    【分析】根据二次函数的性质可得:当x1时,y随x的增大而增大,然后求出x=0、3对应的y的值,再进行比较即可.
    2.(2023·南充)抛物线y=−x2+kx+k−54与x轴的一个交点为A(m,0),若−2≤m≤1,则实数k的取值范围是( )
    A.−214≤k≤1B.k≤−214或k≥1
    C.−5≤k≤98D.k≤−5或k≥98
    【答案】B
    【解析】【解答】解:∵y=−x2+kx+k−54与x轴的一个交点为A(m,0),
    ∴0=−x2+kx+k−54存在实数根,
    ∴△=k2+4k−54≥0,
    解得k≤−5,k≥1,
    当k≤-5时,画出图像如图所示:
    ∴当x=-2时,−4−k+k−54≥0,
    解得k≤−214,
    当k≥1时,画出图像如图所示:
    当x=-2时,−4−2k+k−54≤0,
    解得k≥−214,
    ∴k≥1,
    故答案为:B
    【分析】先根据题意得到0=−x2+kx+k−54存在实数根,进而运用一元二次方程的判别式即可得到k≤−5,k≥1,再分类讨论结合题意即可求解。
    3.(2023·台州)抛物线y=ax2−a(a≠0)与直线y=kx交于A(x1,y1),B(x2,y2)两点,若x1+x20),下列结论:
    ①函数图象一定经过第一、二、四象限;②函数图象一定不经过第三象限;③当x0时,y随x的增大而增大.
    其中所有正确结论的序号是( )
    A.①②B.②③C.②D.③④
    【答案】B
    【解析】【解答】解:∵a>0,
    ∴抛物线的开口向上,
    ∵对称轴为直线x=−−22a=1a>0,
    ∴抛物线的对称轴在y轴的右侧,
    ∴当x<0时,y随x的增大而减小,故③正确;
    当x>1a时y随x的增大而增大,故④错误;
    当x=0时y=12>0,
    ∴抛物线与y轴的交点在x轴的上方,
    ∴抛物线一定不经过第三象限,可能经过第一、二、四象限,故①错误,②正确,
    ∴正确结论的序号为 ②③ .
    故答案为:B
    【分析】利用a的取值范围可得到抛物线的开口方向,同时可求出抛物线的对称轴,利用二次函数的增减性,可对③④作出判断;利用抛物线的开口方向,与y轴的交点情况及对称轴可得到抛物线可能经过的象限,可对①②作出判断;综上所述可得到正确结论的序号.
    5.(2023·广安)如图所示,二次函数y=ax2+bx+c(a、b、c为常数,a≠0)的图象与x轴交于点A(−3,0),B(1,0).有下列结论:①abc>0;②若点(−2,y1)和(−0.5,y2)均在抛物线上,则y10.其中正确的有( )
    A.1个B.2个C.3个D.4个
    【答案】C
    【解析】【解答】解:
    由题意得a<0,c>0,
    ∵−b2a<0,
    ∴b<0,
    ∴abc>0,①正确;
    ∵点(−2,y1)和(−0.5,y2)均在抛物线上,且关于抛物线的对称轴对称,
    ∴−b2a=−1,
    ∵−0.5−1<−2−1,
    ∴y1

    相关试卷

    备战2024年中考数学二轮专题复习真题演练之二次函数(5) (解析):

    这是一份备战2024年中考数学二轮专题复习真题演练之二次函数(5) (解析),共71页。试卷主要包含了选择题,填空题,综合题等内容,欢迎下载使用。

    备战2024年中考数学二轮专题复习真题演练之二次函数(4):

    这是一份备战2024年中考数学二轮专题复习真题演练之二次函数(4),文件包含备战2024年中考数学二轮专题复习真题演练之二次函数4解析docx、备战2024年中考数学二轮专题复习真题演练之二次函数4docx、2024年高三数学二轮备考真题演练之三角函数docx等3份试卷配套教学资源,其中试卷共88页, 欢迎下载使用。

    备战2024年中考数学二轮专题复习真题演练之二次函数(4):

    这是一份备战2024年中考数学二轮专题复习真题演练之二次函数(4),共13页。试卷主要包含了选择题,四象限D.第一,填空题等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map