广东省汕头市金山中学2023-2024学年高二上学期期末考试数学试卷(Word版附答案)
展开一、单选题(每小题五分)
1.已知点是点在坐标平面内的射影,则( )
A.B.C.D.
2.已知直线的倾斜角为,则( )
A.B.C.D.
3.圆关于直线对称后的方程为( )
A. B.
C. D.
4.命题p:方程表示焦点在y轴上的椭圆,则使命题p成立的充分必要条件是( )
A.B.
C.D.
5.设数列满足,且,则( )
A.-2B.C.D.3
6.已知两圆和恰有三条公切线,若,,且,则的最小值为( )
A.B.C.D.
7.已知双曲线的左、右焦点分别是,,直线不过点,且与左支交于,两点,的周长是的倍且两个三角形周长之和为,则的离心率为( )
A.B.C.D.
8.已知数列满足,且,若,数列的前项和为,则( )
A.B.C.D.
二、多选题(每小题五分)
9.下面四个结论正确的是( )
A.空间向量,若⊥,则
B.若对平面中任意一点,有 则P,A,B三点共线.
C.已知是空间的一个基底,若,则也是空间的一个基底.
D.任意向量,满足.
10.已知等差数列{}的前n项和 ,则下列选项正确的是( )
A.B.
C.当取得最大值时D.当取得最大值时
11.已知,,直线:,:,且,则( )
A.B.
C.D.
12.如图所示.已知椭圆方程为,F1、F2为左右焦点,下列命题正确的是( )
A.P为椭圆上一点,线段PF1中点为Q,则为定值
B.直线与椭圆交于R ,S两点,A是椭圆上异与R ,S的点,且、均存在,则
C.若椭圆上存在一点M使,则椭圆离心率的取值范围是
D.四边形 为椭圆内接矩形,则其面积最大值为2ab
三、填空题(每小题5分)
13.已知方程表示的圆中,当圆面积最小时,此时 .
14.已知抛物线的顶点为,且过点.若是边长为的等边三角形,则 .
15.设数列满足,若,则的前99项和为 .
16.正四面体的棱长为12,点是该正四面体内切球球面上的动点,当取得最小值时,点到的距离为 .
四、解答题(17题10分,18-22题12分)
17.在正项等比数列中,,.
(1)求的通项公式;
(2)若,证明是等差数列,并求的前项和.
18.已知中角,,所对的边分别为,,,设其面积为,.
(1)求角;
(2)若,点在边上,若是的平分线,且,求.
19.已知定义域为的函数是奇函数.
(1)求a,b的值;
(2)直接写出该函数在定义域中的单调性(不需要证明),若对于任意,不等式恒成立,求k的范围.
20.如图,在四棱锥中,底面四边形为菱形,平面,过的平面交平面于.
(1)证明:平面;
(2)若平面平面,四棱锥的体积为,求平面与平面夹角的余弦值.
21.已知函数的图象经过坐标原点,且,数列的前项和().
(1)求数列的通项公式;
(2)若数列满足,求数列的前项和;
(3)令,若(为非零整数,),试确定的值,使得对任意,都有成立.
22.已知椭圆的右焦点为,离心率为,点在椭圆C上.
(1)求椭圆的标准方程;
(2)过点作直线(直线的斜率不为0)与椭圆相交于两点,过焦点作与直
的倾斜角互补的直线,与椭圆相交于两点,求的值.
广东省汕头市澄海区2023-2024学年高二上学期期末考试数学试卷(Word版附解析): 这是一份广东省汕头市澄海区2023-2024学年高二上学期期末考试数学试卷(Word版附解析),共25页。
广东省汕头市金山中学2023-2024学年高一上学期期末考试数学试卷(PDF版附答案): 这是一份广东省汕头市金山中学2023-2024学年高一上学期期末考试数学试卷(PDF版附答案),文件包含2023级高一第一学期期末考试数学科答题卡pdf、高一第一学期期末考试数学试卷pdf、2023级金中高一上学期期末考试数学试卷参考答案pdf等3份试卷配套教学资源,其中试卷共13页, 欢迎下载使用。
广东省汕头市金山中学2023-2024学年高一上学期10月阶段数学试题(Word版附答案): 这是一份广东省汕头市金山中学2023-2024学年高一上学期10月阶段数学试题(Word版附答案),共5页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。