专题16 抛物线的焦点弦、中点弦、弦长问题-备战2024年新高考数学之圆锥曲线专项高分突破(新高考专用)
展开一、单选题:本大题共8小题,每个小题5分,共40分.在每小题给出的选项中,只有一项是符合题目要求的.
1.已知抛物线的焦点为,则过点且斜率为的直线截抛物线所得弦长为( )
A.B.C.D.
2.设为抛物线的焦点,过点的直线交于两点,若,则( )
A.8B.12C.16D.24
3.过抛物线的焦点的直线交于两点,若直线过点,且,则抛物线的准线方程是( )
A.B.C.D.
4.过点作抛物线的弦AB,恰被点Q平分,则弦AB所在直线的方程为 ( )
A.B.
C.D.
5.已知直线与抛物线:交于,两点,过,分别作的切线交于点,若的面积为,则( )
A.1B.C.D.2
6.已知抛物线:的焦点为F,过F且斜率大于零的直线l与及抛物线:的所有公共点从右到左分别为点A,B,C,则( )
A.4B.6C.8D.10
7.已知斜率为的直线过抛物线C:的焦点F且与抛物线C相交于A,B两点,过A,B分别作该抛物线准线的垂线,垂足分别为,,若与的面积之比为3,则k的值为( )
A.B.C.D.
8.已知抛物线的焦点与的一个焦点重合,过焦点的直线与交于,两不同点,抛物线在,两点处的切线相交于点,且的横坐标为4,则弦长( )
A.16B.26C.14D.24
二、多选题:本大题共4小题,每个小题5分,共20分.在每小题给出的选项中,只有一项或者多项是符合题目要求的.
9.已知是抛物线内一动点,直线过点且与抛物线相交于两点,则下列说法正确的是( )
A.时,的最小值为
B.的取值范围是
C.当点是弦的中点时,直线的斜率为
D.当点是弦的中点时,轴上存在一定点,都有
10.已知A,B是抛物线:上两动点,为抛物线的焦点,则( )
A.直线AB过焦点F时,最小值为4
B.直线AB过焦点F且倾斜角为时,
C.若AB中点M的横坐标为2,则最大值为5
D.
11.过抛物线上一点作两条相互垂直的直线,与的另外两个交点分别为,则( )
A.的准线方程是
B.过的焦点的最短弦长为2
C.直线过定点
D.若直线过点,则的面积为24
12.已知是抛物线的焦点,,是抛物线上的两点,为坐标原点,则( )
A.抛物线的准线方程为
B.若,则的面积为
C.若直线过焦点,且,则到直线的距离为
D.若,则
三、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.
13.抛物线截直线所得弦长等于 .
14.若抛物线的弦被点平分,则此弦所在直线的斜率为 .
15.已知斜率为的直线过抛物线的焦点,与抛物线交于两点(在的左侧),又为坐标原点,点(异于)也为抛物线上一点,且,则实数的值为 .
16.已知抛物线的焦点为,准线与轴的交点为,过点的直线与抛物线交于点,,,且,则 .
四、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.
17.已知抛物线的焦点为,斜率为的直线与交于两点,与轴交点为P.
(1)若,求的方程;
(2)若,求.
18.已知直线与抛物线相交于、两点.
(1)若直线过点,且倾斜角为,求的值;
(2)若直线过点,且弦恰被平分,求所在直线的方程.
19.已知直线轴,垂足为x轴负半轴上的点E,点E关于原点O的对称点为F,且,直线,垂足为A,线段AF的垂直平分线与直线交于点B,记点B的轨迹为曲线C.
(1)求曲线C的方程;
(2)已知点,不过点P的直线l与曲线C交于M,N两点,以线段MN为直径的圆恒过点P,点P关于x轴的对称点为Q,若的面积是,求直线的斜率.
20.设抛物线C:的焦点为F,P是抛物线外一点,直线PA,PB与抛物线C切于A,B两点,过点P的直线交抛物线C于D,E两点,直线AB与DE交于点Q.
(1)若AB过焦点F,且,求直线AB的倾斜角;
(2)求的值.
21.已知是抛物线的焦点,过点的直线交抛物线于两点,当平行于轴时,.
(1)求抛物线的方程;
(2)若为坐标原点,过点作轴的垂线交直线于点,过点作直线的垂线与抛物线的另一交点为的中点为,证明:三点共线.
22.已知抛物线:上一点到焦点的距离为2.
(1)求抛物线的方程;
(2)过点的直线交抛物线于,两点,点,连接交抛物线于另一点,连接交抛物线于另一点,且与的面积之比为,求直线的方程.
专题26 圆锥曲线中的弦长问题-备战2024年新高考数学之圆锥曲线专项高分突破(新高考专用): 这是一份专题26 圆锥曲线中的弦长问题-备战2024年新高考数学之圆锥曲线专项高分突破(新高考专用),文件包含专题26圆锥曲线中的弦长问题原卷版docx、专题26圆锥曲线中的弦长问题解析版docx等2份试卷配套教学资源,其中试卷共23页, 欢迎下载使用。
专题09 双曲线的焦点弦、中点弦、弦长问题-备战2024年新高考数学之圆锥曲线专项高分突破(新高考专用): 这是一份专题09 双曲线的焦点弦、中点弦、弦长问题-备战2024年新高考数学之圆锥曲线专项高分突破(新高考专用),文件包含专题09双曲线的焦点弦中点弦弦长问题原卷版docx、专题09双曲线的焦点弦中点弦弦长问题解析版docx等2份试卷配套教学资源,其中试卷共22页, 欢迎下载使用。
专题02 椭圆的焦点弦,中点弦,弦长问题-备战2024年新高考数学之圆锥曲线专项高分突破(新高考专用): 这是一份专题02 椭圆的焦点弦,中点弦,弦长问题-备战2024年新高考数学之圆锥曲线专项高分突破(新高考专用),文件包含专题02椭圆的焦点弦中点弦弦长问题原卷版docx、专题02椭圆的焦点弦中点弦弦长问题解析版docx等2份试卷配套教学资源,其中试卷共23页, 欢迎下载使用。