年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    专题30 圆锥曲线中的定值问题-备战2024年新高考数学之圆锥曲线专项高分突破(新高考专用)

    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      专题30 圆锥曲线中的定值问题(原卷版).docx
    • 解析
      专题30 圆锥曲线中的定值问题(解析版).docx
    专题30 圆锥曲线中的定值问题(原卷版)第1页
    专题30 圆锥曲线中的定值问题(原卷版)第2页
    专题30 圆锥曲线中的定值问题(原卷版)第3页
    专题30 圆锥曲线中的定值问题(解析版)第1页
    专题30 圆锥曲线中的定值问题(解析版)第2页
    专题30 圆锥曲线中的定值问题(解析版)第3页
    还剩4页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题30 圆锥曲线中的定值问题-备战2024年新高考数学之圆锥曲线专项高分突破(新高考专用)

    展开

    这是一份专题30 圆锥曲线中的定值问题-备战2024年新高考数学之圆锥曲线专项高分突破(新高考专用),文件包含专题30圆锥曲线中的定值问题原卷版docx、专题30圆锥曲线中的定值问题解析版docx等2份试卷配套教学资源,其中试卷共24页, 欢迎下载使用。
    一、单选题:本大题共8小题,每个小题5分,共40分.在每小题给出的选项中,只有一项是符合题目要求的.
    1.古希腊人从一对对顶圆锥的截痕中发现了圆锥曲线,并研究了它的一些几何性质.比如,双曲线有如下性质:A,B分别为双曲线的左、右顶点,从C上一点P(异于A,B)向实轴引垂线,垂足为Q,则为常数.若C的离心率为2,则该常数为( )
    A.B.C.D.3
    2.已知椭圆,A,B分别是椭圆C的左、右顶点,,直线m经过点B且垂直于x轴,P是椭圆上异于A,B的任意一点,直线AP交m于点M,则( )
    A.B.C.D.
    3.已知F为抛物线C:的焦点,O为坐标原点,过点F且斜率为1的直线l交抛物线C于A、B两点,则直线OA、OB的斜率之和为( )
    A.-2B.-2PC.-4D.-4P
    4.过抛物线的焦点作直线交抛物线于M,N两点,弦MN的垂直平分线交x轴于点P.已知是一个定值,则该定值为( )
    A.2B.C.D.
    5.已知点,在椭圆上,为坐标原点,记直线,的斜率分别为,,若,则( )
    A.2B.3C.4D.5
    6.双曲线和椭圆的右焦点分别为,,,分别为上第一象限内不同于的点,若,,则四条直线的斜率之和为( )
    A.1B.0C.D.不确定值
    7.双曲线的左顶点为,右焦点为,离心率为,焦距为.设是双曲线上任意一点,且在第一象限,直线与的倾斜角分别为,,则的值为( )
    A.B.C.D.与位置有关
    8.已知P为椭圆上任意一点,点M,N分别在直线与上,且,,若为定值,则椭圆的离心率为( )
    A.B.
    C.D.
    二、多选题:本大题共4小题,每个小题5分,共20分.在每小题给出的选项中,只有一项或者多项是符合题目要求的.
    9.已知抛物线与圆交于、两点,且,直线过的焦点,且与交于、两点,则下列说法中正确的是( )
    A.
    B.
    C.存在某条直线,使得
    D.若点,则周长的最小值为
    10.已知,是椭圆:的左右顶点,过点且斜率不为零的直线与 交于,两点,,,,分别表示直线,,,的斜率,则下列结论中正确的是( )
    A.B.
    C.D.直线与的交点的轨迹方程是
    11.在平面直角坐标系中,已知双曲线的离心率为,且双曲线的左焦点在直线上,、分别是双曲线的左、右顶点,点是双曲线的右支上位于第一象限的动点,记、的斜率分别为、 ,则下列说法正确的是( )
    A.双曲线的渐近线方程为B.双曲线的方程为
    C.为定值D.存在点,使得
    12.点分别为椭圆的左、右焦点且.点P为椭圆上任意一点,的面积的最大值是1,点M的坐标为,过点且斜率为k的直线L与椭圆C相交于A,B两点,则下列结论成立的是( )
    A.椭圆的离心率
    B.的值与k相关
    C.的值为常数
    D.的值为常数-1
    三、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.
    13.已知抛物线的焦点为,准线交轴于点,过点的直线交该抛物线于两点,则直线与直线的斜率之和为 .
    14.已知椭圆的左顶点为A,O为坐标原点,直线与椭圆C交于M,N两点,射线与椭圆C交于点P,设直线,的斜率分别为,,则 .
    15.已知点M、N分别是椭圆上两动点,且直线的斜率的乘积为,若椭圆上任一点P满足,则的值为 .
    16.已知A,B是双曲线上的两个动点,动点P满足,O为坐标原点,直线OA与直线OB斜率之积为2,若平面内存在两定点、,使得为定值,则该定值为 .
    四、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.
    17.已知双曲线,渐近线方程为,点在上;

    (1)求双曲线的方程;
    (2)过点的两条直线,分别与双曲线交于,两点(不与点重合),且两条直线的斜率,满足,直线与直线,轴分别交于,两点,求证:的面积为定值.
    18.已知双曲线:实轴长为4(在的左侧),双曲线上第一象限内的一点到两渐近线的距离之积为.
    (1)求双曲线的标准方程;
    (2)设过的直线与双曲线交于,两点,记直线,的斜率为,,请从下列的结论中选择一个正确的结论,并予以证明.
    ①为定值;
    ②为定值;
    ③为定值
    19.已知椭圆的左、右焦点为,离心率为.点是椭圆上不同于顶点的任意一点,射线分别与椭圆交于点,的周长为8.
    (1)求椭圆的标准方程;
    (2)设,,的面积分别为.求证:为定值.
    20.如图3所示,点,分别为椭圆的左焦点和右顶点,点为抛物线的焦点,且(为坐标原点).

    (1)求椭圆的方程;
    (2)过点作直线交椭圆于,两点,连接,并延长交抛物线的准线于点,,求证:为定值.
    21.已知抛物线的焦点为,抛物线的焦点为,且.
    (1)求的值;
    (2)若直线l与交于M,N两点,与交于P,Q两点,M,P在第一象限,N,Q在第四象限,且,证明:为定值.
    22.设点F为抛物线C:的焦点,过点F且斜率为的直线与C交于A,B两点(O为坐标原点)
    (1)求抛物线C的方程;
    (2)过点作两条斜率分别为,的直线,,它们分别与抛物线C交于点P,Q和R,S.已知,问:是否存在实数,使得为定值?若存在,求的值,若不存在,请说明理由.

    相关试卷

    专题31 圆锥曲线中的定直线问题-备战2024年新高考数学之圆锥曲线专项高分突破(新高考专用):

    这是一份专题31 圆锥曲线中的定直线问题-备战2024年新高考数学之圆锥曲线专项高分突破(新高考专用),文件包含专题31圆锥曲线中的定直线问题原卷版docx、专题31圆锥曲线中的定直线问题解析版docx等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。

    专题28 圆锥曲线中的范围和最值问题-备战2024年新高考数学之圆锥曲线专项高分突破(新高考专用):

    这是一份专题28 圆锥曲线中的范围和最值问题-备战2024年新高考数学之圆锥曲线专项高分突破(新高考专用),文件包含专题28圆锥曲线中的范围和最值问题原卷版docx、专题28圆锥曲线中的范围和最值问题解析版docx等2份试卷配套教学资源,其中试卷共28页, 欢迎下载使用。

    专题19 抛物线中的定点、定值、定直线问题-备战2024年新高考数学之圆锥曲线专项高分突破(新高考专用):

    这是一份专题19 抛物线中的定点、定值、定直线问题-备战2024年新高考数学之圆锥曲线专项高分突破(新高考专用),文件包含专题19抛物线中的定点定值定直线问题原卷版docx、专题19抛物线中的定点定值定直线问题解析版docx等2份试卷配套教学资源,其中试卷共23页, 欢迎下载使用。

    文档详情页底部广告位
    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map