初中数学人教版七年级下册7.1.2平面直角坐标系课后复习题
展开
这是一份初中数学人教版七年级下册7.1.2平面直角坐标系课后复习题,共51页。试卷主要包含了在平面直角坐标系中,若点P,如图,点A,在平面直角坐标系中,点P,已知点A的坐标为,已知点A等内容,欢迎下载使用。
1.在平面直角坐标系中,若点P(x,y)在x轴上,则有( )
A.x=0B.y=0C.x=0,y=0D.x=0,y≠0
2.如图,点A(﹣2,1)到y轴的距离为( )
A.﹣2B.1C.2D.
3.在平面直角坐标系中,点P(m﹣3,4﹣2m)不可能在( )
A.第一象限B.第二象限C.第三象限D.第四象限
4.若点P在x轴的下方,y轴的左方,到x轴的距离是3,到y轴的距离是2.则点P的坐标为( )
A.(﹣3,2)B.(﹣2,3)C.(﹣3,﹣2)D.(﹣2,﹣3)
5.已知点A的坐标为(a+1,3﹣a),下列说法正确的是( )
A.若点A在y轴上,则a=3
B.若点A在一三象限角平分线上,则a=1
C.若点A到x轴的距离是3,则a=±6
D.若点A在第四象限,则a的值可以为﹣2
6.已知点A(m,n),且有mn≤0,则点A一定不在( )
A.第一象限B.第二象限C.第四象限D.坐标轴上
7.已知a+b>0,ab>0,则在如图所示的平面直角坐标系中,小手盖住的点的坐标可能是( )
A.(a,b)B.(﹣a,b)C.(﹣a,﹣b)D.(a,﹣b)
8.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)…根据这个规律,第2012个点的横坐标为 .
9.如图,已知A1(1,0),A2(1,﹣1),A3(﹣1,﹣1),A4(﹣1,1),A5(2,1),…,则点A2010的坐标是 .
10.如果P(m+3,2m+4)在y轴上,那么点P的坐标是 .
11.已知点P的坐标(2﹣a,3a+6),且点P到两坐标轴的距离相等,则点P的坐标是 .
12.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2013次运动后,动点P的坐标是 .
13.如图,已知A1(1,0),A2(1,1),A3(﹣1,1),A4(﹣1,﹣1),A5(2,﹣1),….则点A2007的坐标为 .
14.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0)…根据这个规律探究可得,第88个点的坐标为 .
15.已知点P(a﹣2,2a+8),分别根据下列条件求出点P的坐标.
(1)点P在x轴上;
(2)点P在y轴上;
(3)点Q的坐标为(1,5),直线PQ∥y轴;
(4)点P到x轴、y轴的距离相等.
16.在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位.其行走路线如图所示.
(1)填写下列各点的坐标:
A1( , ),
A3( , ),
A12( , );
(2)写出点A4n的坐标(n是正整数);
(3)指出蚂蚁从点A100到A101的移动方向.
17.在平面直角坐标系中,A、B点的位置如图所示,
(1)写出A、B两点的坐标: .
(2)若C(﹣3,﹣4)、D(3,﹣3),请在图示坐标系中标出C、D两点.
(3)写出A、B、C、D四点到x轴和y轴的距离:A 到x轴的距离为 ,到y轴的距离为 .B 到x轴的距离为 ,到y轴的距离为 .
C(﹣3,﹣4)到x轴的距离为 ,到y轴的距离为 .D(3,﹣3 )到x轴的距离为 ,到y轴的距离为 .
(4)分析(3)中点的坐标与该点到坐标轴的距离的关系,利用你所发现的结论写出点P(x,y)到x轴的距离为 ,到y轴的距离为 .
18.已知当m,n都是实数.且满足2m=8+n时,称p(m﹣1,)为“开心点”.
(1)判断点A(5,3),B(4,10)是否为“开心点”,并说明理由;
(2)若点M(a,2a﹣1)是“开心点”,请判断点M在第几象限?并说明理由.
二.规律型:点的坐标(共5小题)
19.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2011次运动后,动点P的坐标是( )
A.(2011,0)B.(2011,1)C.(2011,2)D.(2010,0)
20.如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2014次碰到矩形的边时,点P的坐标为( )
A.(1,4)B.(5,0)C.(6,4)D.(8,3)
21.如图,在平面直角坐标系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2).把一条长为2014个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A﹣B﹣C﹣D﹣A…的规律绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是( )
A.(﹣1,0)B.(1,﹣2)C.(1,1)D.(﹣1,﹣1)
22.如图,弹性小球从P(2,0)出发,沿所示方向运动,每当小球碰到正方形OABC的边时反弹,反弹时反射角等于入射角,当小球第一次碰到正方形的边时的点为P1,第二次碰到正方形的边时的点为P2…第n次碰到正方形的边时的点为Pn,则P2015的坐标是( )
A.(5,3)B.(3,5)C.(0,2)D.(2,0)
23.如图,动点P从(0,3)出发,沿箭头所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角.当点P第2018次碰到矩形的边时,点P的坐标为( )
A.(1,4)B.(5,0)C.(7,4)D.(8,3)
三.坐标确定位置(共13小题)
24.象棋起源于中国,中国象棋文化历史悠久.如图,是中国象棋棋盘的一部分,若“帅”位于点(1,﹣1),“炮”位于点(2,1)上,则“兵”位于点( )上
A.(0,2)B.(﹣2,3)C.(﹣3,0)D.(﹣1,2)
25.将正整数按如图所示的规律排列下去,若有序实数对(n,m)表示第n排,从左到右第m个数,如(4,2)表示9,则表示58的有序数对是( )
A.(11,3)B.(3,11)C.(11,9)D.(9,11)
26.如图,已知棋子“车”的坐标为(﹣2,﹣1),棋子“马”的坐标为(1,﹣1),则棋子“炮”的坐标为( )
A.(3,2)B.(﹣3,2)C.(3,﹣2)D.(﹣3,﹣2)
27.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )
A.(5,4)B.(4,5)C.(3,4)D.(4,3)
28.如图中的一张脸,小明说:“如果我用(0,2)表示左眼,用(2,2)表示右眼”,那么嘴的位置可以表示成( )
A.(0,1)B.(2,1)C.(1,0)D.(1,﹣1)
29.象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图,是一局象棋残局,已知表示棋子“馬”和“車”的点的坐标分别为(4,3),(﹣2,1),则表示棋子“炮”的点的坐标为( )
A.(﹣3,3)B.(3,2)C.(0,3)D.(1,3)
30.如图,小球起始时位于(3,0)处,沿所示的方向击球,小球运动的轨迹如图所示.如果小球起始时位于(1,0)处,仍按原来方向击球,小球第一次碰到球桌边时,小球的位置是(0,1),那么小球第2020次碰到球桌边时,小球的位置是( )
A.(3,4)B.(5,4)C.(7,0)D.(8,1)
31.如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动一个单位,依次得到点P1(0,1);P2(1,1);P3(1,0);P4(1,﹣1);P5(2,﹣1);P6(2,0)……,则点P2019的坐标是 .
32.将正整数按如图所示的规律排列下去,若有序实数对(n,m)表示第n排,从左到右第m个数,如(4,2)表示实数9,则表示实数17的有序实数对是 .
33.如图所示,在象棋盘上建立平面直角坐标系,使“马”位于点(2,2),“炮”位于点(﹣1,2),写出“兵”所在位置的坐标 .
34.以水平数轴的原点O为圆心,过正半轴Ox上的每一刻度点画同心圆,将Ox逆时针依次旋转30°、60°、90°、…、330°得到11条射线,构成如图所示的“圆”坐标系,点A、B的坐标分别表示为(5,0°)、(4,300°),则点C的坐标表示为 .
35.将正整数按如图所示的规律排列下去.若用有序实数对(n,m)表示第n排,从左到右第m个数,如(4,3)表示实数9,则(7,2)表示的实数是 .
36.多多和爸爸、妈妈周末到动物园游玩,回到家后,她利用平面直角坐标系画出了动物园的景区地图,如图所示.可是她忘记了在图中标出原点和x轴、y轴.只知道马场的坐标为(﹣3,﹣3),你能帮她建立平面直角坐标系并求出其他各景点的坐标?
四.坐标与图形性质(共11小题)
37.已知两点A(a,5),B(﹣1,b)且直线AB∥x轴,则( )
A.a可取任意实数,b=5B.a=﹣1,b可取任意实数
C.a≠﹣1,b=5D.a=﹣1,b≠5
38.已知点A(m+1,﹣2)和点B(3,m﹣1),若直线AB∥x轴,则m的值为( )
A.2B.﹣4C.﹣1D.3
39.平面直角坐标系内AB∥y轴,AB=5,点A的坐标为(﹣5,3),则点B的坐标为( )
A.(﹣5,8)B.(0,3)
C.(﹣5,8)或(﹣5,﹣2)D.(0,3)或(﹣10,3)
40.已知点P(2m+4,m﹣1),点Q(2,5),直线PQ∥y轴,点P的坐标是( )
A.(2,2)B.(16,5)C.(2,﹣2)D.(﹣2,5)
41.平面直角坐标系中,已知点A(﹣3,2),B(x,y),且AB∥x轴,若点B到y轴的距离是到x轴距离的2倍,则点B的坐标为( )
A.(4,2)或(﹣4,2)B.(﹣4,2)或(﹣4,﹣2)
C.(4,2)或(4,﹣2)D.(﹣4,﹣2)或(4,﹣2)
42.已知点A(m,﹣2),B(3,m﹣1),且直线AB∥x轴,则m的值是 .
43.教材上曾让同学们探索过线段的中点坐标:在平面直角坐标系中,若两点A(x1,y1)、B(x2,y2),所连线段AB的中点是M,则M的坐标为(,),例如:点A(1,2)、点B(3,6),则线段AB的中点M的坐标为(,),即M(2,4)请利用以上结论解决问题:在平面直角坐标系中,若点E(a﹣1,a),F(b,a﹣b),线段EF的中点G恰好位于x轴上,且到y轴的距离是2,则2a+b的值等于 .
44.在平面直角坐标系中,若点M(1,3)与点N(m,3)之间的距离是3,则m的值是 .
45.如图,在平面直角坐标系中,已知A(0,a),B(b,0),C(b,c)三点,其中a、b、c满足关系式|a﹣2|+(b﹣3)2=0,(c﹣4)2≤0
(1)求a、b、c的值;
(2)如果在第二象限内有一点P(m,),请用含m的式子表示四边形ABOP的面积;
(3)在(2)的条件下,是否存在点P,使四边形ABOP的面积与△ABC的面积相等?若存在,求出点P的坐标,若不存在,请说明理由.
46.已知:如图,△ABC的三个顶点位置分别是A(1,0)、B(﹣2,3)、C(﹣3,0).
(1)求△ABC的面积是多少?
(2)若点A、C的位置不变,当点P在y轴上时,且S△ACP=2S△ABC,求点P的坐标?
(3)若点B、C的位置不变,当点Q在x轴上时,且S△BCQ=2S△ABC,求点Q的坐标?
47.如图:在直角坐标系中,第一次将△AOB变换成△OA1B1,第二次将三角形变换成△OA2B2,第三次将△OA2B2,变换成△OA3B3,已知A(1,3),A1(3,3),A2(5,3),A3(7,3);B(2,0),B1(4,0),B2(8,0),B3(16,0).
(1)观察每次变换前后的三角形有何变化,找出规律,按此变化规律再将△OA3B3变换成△OA4B4,则A4的坐标是 ,B4的坐标是 .
(2)若按(1)找到的规律将△OAB进行了n次变换,得到△OAnBn,比较每次变换中三角形顶点有何变化,找出规律,推测An的坐标是 ,Bn的坐标是 .
五.两点间的距离公式(共3小题)
48.在平面直角坐标系中,若点M(﹣2,3)与点N(﹣2,y)之间的距离是5,那么y的值是( )
A.﹣2B.8C.2或8D.﹣2或8
49.已知点M(3,﹣4),在x轴上有一点与M的距离为5,则该点的坐标为( )
A.(6,0)B.(0,1)
C.(0,﹣8)D.(6,0)或(0,0)
50.先阅读下列一段文字,再解答问题
已知在平面内有两点P1(x1,y1),P2(x2,y2),其两点间的距离公式为P1P2=,同时,当两点所在的直线在坐标轴上或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x2﹣x1|或|y2﹣y1|
(1)已知点A(2,4),B(﹣3,﹣8),试求A,B两点间的距离;
(2)已知点A,B在平行于y轴的直线上,点A的纵坐标为5,点B的纵坐标为﹣1,试求A,B两点间的距离;
(3)已知点A(0,6)B(﹣3,2),C(3,2),判断线段AB,BC,AC中哪两条是相等的?并说明理由.
六.坐标与图形变化-平移(共6小题)
51.如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为( )
A.2B.3C.4D.5
52.如图,线段AB经过平移得到线段A′B′,其中点A,B的对应点分别为点A′,B′,这四个点都在格点上.若线段AB上有一个点P(a,b),则点P在A′B′上的对应点P′的坐标为( )
A.(a﹣2,b+3)B.(a﹣2,b﹣3)C.(a+2,b+3)D.(a+2,b﹣3)
53.如图,A,B的坐标为(2,0),(0,1)若将线段AB平移至A1B1,则a+b的值为 .
54.如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2).
(1)写出点A、B的坐标:
A( , )、B( , )
(2)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,则A′B′C′的三个顶点坐标分别是A′( , )、B′( , )、C′( , ).
(3)△ABC的面积为 .
55.如图,在平面直角坐标系中,点A,B的坐标分别为(﹣1,0),(3,0),现同时将点A,B分别向上平移2个单位长度,再向右平移1个单位长度,得到A,B的对应点C,D,连接AC,BD,CD.
(1)直接写出点C,D的坐标,求出四边形ABDC的面积;
(2)在x轴上是否存在一点F,使得三角形DFC的面积是三角形DFB面积的2倍,若存在,请求出点F的坐标;若不存在,请说明理由.
56.如图所示,A(1,0)、点B在y轴上,将三角形OAB沿x轴负方向平移,平移后的图形为三角形DEC,且点C的坐标为(a,b),且a=+﹣3.
(1)直接写出点C的坐标 ;
(2)直接写出点E的坐标 ;
(3)点P是CE上一动点,设∠CBP=x°,∠PAD=y°,∠BPA=z°,确定x,y,z之间的数量关系,并证明你的结论.
2024年人教版七年级下册数学第7章 平面直角坐标系
参考答案与试题解析
一.点的坐标(共18小题)
1.在平面直角坐标系中,若点P(x,y)在x轴上,则有( )
A.x=0B.y=0C.x=0,y=0D.x=0,y≠0
【答案】B
【解答】解:在平面直角坐标系中,若点P(x,y)在x轴上,则有y=0.
故选:B.
【点评】本题考查了点的坐标,熟记x轴上点的纵坐标等于零,y轴上点的纵坐标等于零是解题关键.
2.如图,点A(﹣2,1)到y轴的距离为( )
A.﹣2B.1C.2D.
【答案】C
【解答】解:点A的坐标为(﹣2,1),则点A到y轴的距离为2.
故选:C.
【点评】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度是解题的关键.
3.在平面直角坐标系中,点P(m﹣3,4﹣2m)不可能在( )
A.第一象限B.第二象限C.第三象限D.第四象限
【答案】A
【解答】解:①m﹣3>0,即m>3时,﹣2m<﹣6,
4﹣2m<﹣2,
所以,点P(m﹣3,4﹣2m)在第四象限,不可能在第一象限;
②m﹣3<0,即m<3时,﹣2m>﹣6,
4﹣2m>﹣2,
点P(m﹣3,4﹣2m)可以在第二或三象限,
综上所述,点P不可能在第一象限.
故选:A.
【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).
4.若点P在x轴的下方,y轴的左方,到x轴的距离是3,到y轴的距离是2.则点P的坐标为( )
A.(﹣3,2)B.(﹣2,3)C.(﹣3,﹣2)D.(﹣2,﹣3)
【答案】D
【解答】解:∵点P在x轴的下方,到x轴的距离是3,
∴P点纵坐标为﹣3,
∵P在y轴的左方,到y轴的距离是2,
∴P点横坐标为﹣2,
∴P(﹣2,﹣3),
故选:D.
【点评】此题主要考查了点的坐标,关键是正确画出坐标系,再确定P点位置.
5.已知点A的坐标为(a+1,3﹣a),下列说法正确的是( )
A.若点A在y轴上,则a=3
B.若点A在一三象限角平分线上,则a=1
C.若点A到x轴的距离是3,则a=±6
D.若点A在第四象限,则a的值可以为﹣2
【答案】B
【解答】解:A.若点A在y轴上,则a+1=0,解得a=﹣1,故本选项错误;
B.若点A在一三象限角平分线上,则a+1=3﹣a,解得a=1,故本选项正确;
C.若点A到x轴的距离是3,则|3﹣a|=3,解得a=6或0,故本选项错误;
D.若点A在第四象限,则a+1>0,且3﹣a<0,解得a>3,故a的值不可以为﹣2;
故选:B.
【点评】本题主要考查了坐标轴上的点、一三象限角平分线上的点以及不同象限内点的坐标特征,解题时注意:横轴上点的纵坐标为0,纵轴上点的横坐标为0.
6.已知点A(m,n),且有mn≤0,则点A一定不在( )
A.第一象限B.第二象限C.第四象限D.坐标轴上
【答案】A
【解答】解:根据点A(m,n),且有mn≤0,
所以m≥0,n≤0或m≤0,n≥0,
所以点A一定不在第一象限,
故选:A.
【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).
7.已知a+b>0,ab>0,则在如图所示的平面直角坐标系中,小手盖住的点的坐标可能是( )
A.(a,b)B.(﹣a,b)C.(﹣a,﹣b)D.(a,﹣b)
【答案】B
【解答】解:∵a+b>0,ab>0,∴a>0,b>0.
A、(a,b)在第一象限,因为小手盖住的点在第二象限,故此选项不符合题意;
B、(﹣a,b)在第二象限,因为小手盖住的点在第二象限,故此选项符合题意;
C、(﹣a,﹣b)在第三象限,因为小手盖住的点在第二象限,故此选项不符合题意;
D、(a,﹣b)在第四象限,因为小手盖住的点在第二象限,故此选项不符合题意;
故选:B.
【点评】本题考查了点的象限的判断,熟练判断a,b的正负是解题的关键.
8.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)…根据这个规律,第2012个点的横坐标为 45 .
【答案】见试题解答内容
【解答】解:根据图形,以最外边的矩形边长上的点为准,点的总个数等于x轴上右下角的点的横坐标的平方,
例如:右下角的点的横坐标为1,共有1个,1=12,
右下角的点的横坐标为2时,共有4个,4=22,
右下角的点的横坐标为3时,共有9个,9=32,
右下角的点的横坐标为4时,共有16个,16=42,
…
右下角的点的横坐标为n时,共有n2个,
∵452=2025,45是奇数,
∴第2025个点是(45,0),
第2012个点是(45,13),
所以,第2012个点的横坐标为45.
故答案为:45.
【点评】本题考查了点的坐标,观察出点个数与横坐标的存在的平方关系是解题的关键.
9.如图,已知A1(1,0),A2(1,﹣1),A3(﹣1,﹣1),A4(﹣1,1),A5(2,1),…,则点A2010的坐标是 (503,﹣503) .
【答案】见试题解答内容
【解答】解:易得4的整数倍的各点如A4,A8,A12等点在第二象限,
∵2010÷4=502…2;
∴A2010的坐标在第四象限,
横坐标为(2010﹣2)÷4+1=503;纵坐标为﹣503,
∴点A2010的坐标是(503,﹣503).
故答案为:(503,﹣503).
【点评】本题考查了学生阅读理解及总结规律的能力,解决本题的关键是找到所求点所在的象限,难点是得到相应的计算规律.
10.如果P(m+3,2m+4)在y轴上,那么点P的坐标是 (0,﹣2) .
【答案】见试题解答内容
【解答】解:∵P(m+3,2m+4)在y轴上,
∴m+3=0,得m=﹣3,
即2m+4=﹣2.即点P的坐标为(0,﹣2).
故答案为:(0,﹣2).
【点评】解决本题的关键是掌握好坐标轴上的点的坐标的特征,y轴上的点的横坐标为0.
11.已知点P的坐标(2﹣a,3a+6),且点P到两坐标轴的距离相等,则点P的坐标是 (3,3)或(6,﹣6) .
【答案】见试题解答内容
【解答】解:∵点P到两坐标轴的距离相等就是横纵坐标相等或互为相反数,
∴分以下两种情考虑:
①横纵坐标相等时,即当2﹣a=3a+6时,解得a=﹣1,
∴点P的坐标是(3,3);
②横纵坐标互为相反数时,即当(2﹣a)+(3a+6)=0时,解得a=﹣4,
∴点P的坐标是(6,﹣6).
故答案为(3,3)或(6,﹣6).
【点评】因为这个点到两坐标轴的距离相等,即到坐标轴形成的角的两边距离相等,所以这个点一定在各象限的角平分线上.
12.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2013次运动后,动点P的坐标是 (2013,1) .
【答案】见试题解答内容
【解答】解:根据动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),
第2次接着运动到点(2,0),第3次接着运动到点(3,2),
∴第4次运动到点(4,0),第5次接着运动到点(5,1),…,
∴横坐标为运动次数,经过第2013次运动后,动点P的横坐标为2013,
纵坐标为1,0,2,0,每4次一轮,
∴经过第2013次运动后,动点P的纵坐标为:2013÷4=503余1,
故纵坐标为四个数中第一个,即为1,
∴经过第2013次运动后,动点P的坐标是:(2013,1),
故答案为:(2013,1).
【点评】此题主要考查了点的坐标规律,培养学生观察和归纳能力,从所给的数据和图形中寻求规律进行解题是解答本题的关键.
13.如图,已知A1(1,0),A2(1,1),A3(﹣1,1),A4(﹣1,﹣1),A5(2,﹣1),….则点A2007的坐标为 (﹣502,502) .
【答案】见试题解答内容
【解答】解:由图形以及叙述可知各个点(除A1点和第四象限内的点外)都位于象限的角平分线上,
第一象限角平分线的点对应的字母的下标是2,6,10,14,
即4n﹣2(n是自然数,n是点的横坐标的绝对值);
同理第二象限内点的下标是4n﹣1(n是自然数,n是点的横坐标的绝对值);
第三象限是4n(n是自然数,n是点的横坐标的绝对值);
第四象限是1+4n(n是自然数,n是点的横坐标的绝对值);
2007=4n﹣1则n=502,当2007等于4n+1或4n或4n﹣2时,不存在这样的n的值.
故点A2007在第二象限的角平分线上,即坐标为(﹣502,502).
故答案填(﹣502,502).
【点评】本题是一个探究规律的问题,正确对图中的所有点进行分类,找出每类的规律是解答此题的关键点.
14.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0)…根据这个规律探究可得,第88个点的坐标为 (13,3) .
【答案】见试题解答内容
【解答】解:由图形可知:点的个数依次是1、2、3、4、5、…,且横坐标是偶数时,箭头朝上,
∵1+2+3+4+…+10=55,
∴88﹣55=33,
∵11+12=23<33,11+12+13=36>33,88﹣55﹣23=10,
∴第88个点的横坐标是13,纵坐标是13﹣10=3,
即第88个点的坐标是(13,3),
故答案为:(13,3).
【点评】本题考查了学生的观察图形的能力和理解能力,解此题的关键是根据图形得出规律,题目比较典型,但是一道比较容易出错的题目.
15.已知点P(a﹣2,2a+8),分别根据下列条件求出点P的坐标.
(1)点P在x轴上;
(2)点P在y轴上;
(3)点Q的坐标为(1,5),直线PQ∥y轴;
(4)点P到x轴、y轴的距离相等.
【答案】见试题解答内容
【解答】解:(1)∵点P(a﹣2,2a+8),在x轴上,
∴2a+8=0,
解得:a=﹣4,
故a﹣2=﹣4﹣2=﹣6,
则P(﹣6,0);
(2))∵点P(a﹣2,2a+8),在y轴上,
∴a﹣2=0,
解得:a=2,
故2a+8=2×2+8=12,
则P(0,12);
(3)∵点Q的坐标为(1,5),直线PQ∥y轴,
∴a﹣2=1,
解得:a=3,
故2a+8=14,
则P(1,14);
(4)∵点P到x轴、y轴的距离相等,
∴a﹣2=2a+8或a﹣2+2a+8=0,
解得:a1=﹣10,a2=﹣2,
故当a=﹣10则:a﹣2=﹣12,2a+8=﹣12,
则P(﹣12,﹣12);
故当a=﹣2则:a﹣2=﹣4,2a+8=4,
则P(﹣4,4).
综上所述:P(﹣12,﹣12),(﹣4,4).
【点评】此题主要考查了点的坐标性质,用到的知识点为:点到坐标轴的距离相等,那么点的横纵坐标相等或互为相反数以及在坐标轴上的点的性质.
16.在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位.其行走路线如图所示.
(1)填写下列各点的坐标:
A1( 0 , 1 ),
A3( 1 , 0 ),
A12( 6 , 0 );
(2)写出点A4n的坐标(n是正整数);
(3)指出蚂蚁从点A100到A101的移动方向.
【答案】见试题解答内容
【解答】解:(1)A1(0,1),A3(1,0),A12(6,0);
(2)当n=1时,A4(2,0),
当n=2时,A8(4,0),
当n=3时,A12(6,0),
所以A4n(2n,0);
(3)点A100中的n正好是4的倍数,所以点A100和A101的坐标分别是A100(50,0),A101(50,1),所以蚂蚁从点A100到A101的移动方向是从下向上.
【点评】本题主要考查的是在平面直角坐标系中确定点的坐标和点的坐标的规律性.
17.在平面直角坐标系中,A、B点的位置如图所示,
(1)写出A、B两点的坐标: A(1,2),B(﹣3,2) .
(2)若C(﹣3,﹣4)、D(3,﹣3),请在图示坐标系中标出C、D两点.
(3)写出A、B、C、D四点到x轴和y轴的距离:A (1,2) 到x轴的距离为 2 ,到y轴的距离为 1 .B (﹣3,2) 到x轴的距离为 2 ,到y轴的距离为 3 .
C(﹣3,﹣4)到x轴的距离为 4 ,到y轴的距离为 3 .D(3,﹣3 )到x轴的距离为 3 ,到y轴的距离为 3 .
(4)分析(3)中点的坐标与该点到坐标轴的距离的关系,利用你所发现的结论写出点P(x,y)到x轴的距离为 |y| ,到y轴的距离为 |x| .
【答案】见试题解答内容
【解答】解:(1)如图可得A(1,2),B(﹣3,2);
(2)如图;
(3)到x轴的距离等于该点纵坐标的绝对值;到y轴的距离等于该点横坐标的绝对值,
(1,2);2;1;(﹣3,2);2;3;4;3;3;3;
(4)|y|,|x|;
故答案为A(1,2),B(﹣3,2); 如图;(1,2),2,1,(﹣3,2),2,3,4,3,3,3;
|y|,|x|.
【点评】本题考查了点的坐标以及点的意义,注意:点到x轴的距离等于该点纵坐标的绝对值;点到y轴的距离等于该点横坐标的绝对值.
18.已知当m,n都是实数.且满足2m=8+n时,称p(m﹣1,)为“开心点”.
(1)判断点A(5,3),B(4,10)是否为“开心点”,并说明理由;
(2)若点M(a,2a﹣1)是“开心点”,请判断点M在第几象限?并说明理由.
【答案】见试题解答内容
【解答】解:(1)点A(5,3)为“开心点”,理由如下,
当A(5,3)时,m﹣1=5,,得m=6,n=4,
则2m=12,8+n=12,
所以2m=8+n,
所以A(5,3)是“开心点”;
点B(4,10)不是“开心点”,理由如下,
当B(4,10)时,m﹣1=4,,得m=5,n=18,
则2m=10,8+18=26,
所以2m≠8+n,
所以点B(4,10)不是“开心点”;
(2)点M在第三象限,
理由如下:
∵点M(a,2a﹣1)是“开心点”,
∴m﹣1=a,,
∴m=a+1,n=4a﹣4,
代入2m=8+n有2a+2=8+4a﹣4,
∴a=﹣1,2a﹣1=﹣3,
∴M(﹣1,﹣3),
故点M在第三象限.
【点评】此题主要考查了点的坐标,正确掌握“开心点”的定义是解题关键.
二.规律型:点的坐标(共5小题)
19.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2011次运动后,动点P的坐标是( )
A.(2011,0)B.(2011,1)C.(2011,2)D.(2010,0)
【答案】C
【解答】解:∵第1次运动到点(1,1),第2次运动到点(2,0),第3次接着运动到点(3,2),第4次运动到点(4,0),第5次运动到点(5,1)…,
∴运动后点的横坐标等于运动的次数,
第2011次运动后点P的横坐标为2011,
纵坐标以1、0、2、0每4次为一个循环组循环,
∵2011÷4=502…3,
∴第2011次运动后动点P的纵坐标是第503个循环组的第3次运动,与第3次运动的点的纵坐标相同,为2,
∴点P(2011,2).
故选:C.
【点评】本题是对点的坐标的规律的考查,根据图形观察出点的横坐标与纵坐标的变化规律是解题的关键.
20.如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2014次碰到矩形的边时,点P的坐标为( )
A.(1,4)B.(5,0)C.(6,4)D.(8,3)
【答案】B
【解答】解:如图,经过6次反弹后动点回到出发点(0,3),
∵2014÷6=335…4,
∴当点P第2014次碰到矩形的边时为第336个循环组的第4次反弹,
点P的坐标为(5,0).
故选:B.
【点评】此题主要考查了点的坐标的规律,作出图形,观察出每6次反弹为一个循环组依次循环是解题的关键.
21.如图,在平面直角坐标系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2).把一条长为2014个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A﹣B﹣C﹣D﹣A…的规律绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是( )
A.(﹣1,0)B.(1,﹣2)C.(1,1)D.(﹣1,﹣1)
【答案】D
【解答】解:∵A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),
∴AB=1﹣(﹣1)=2,BC=1﹣(﹣2)=3,CD=1﹣(﹣1)=2,DA=1﹣(﹣2)=3,
∴绕四边形ABCD一周的细线长度为2+3+2+3=10,
2014÷10=201…4,
∴细线另一端在绕四边形第202圈的第4个单位长度的位置,
即从点B 向下沿BC2个单位所在的点的坐标即为所求,也就是点(﹣1,﹣1).
故选:D.
【点评】本题利用点的坐标考查了数字变化规律,根据点的坐标求出四边形ABCD一周的长度,从而确定2014个单位长度的细线的另一端落在第几圈第几个单位长度的位置是解题的关键.
22.如图,弹性小球从P(2,0)出发,沿所示方向运动,每当小球碰到正方形OABC的边时反弹,反弹时反射角等于入射角,当小球第一次碰到正方形的边时的点为P1,第二次碰到正方形的边时的点为P2…第n次碰到正方形的边时的点为Pn,则P2015的坐标是( )
A.(5,3)B.(3,5)C.(0,2)D.(2,0)
【答案】C
【解答】解:∵小球第一次碰到正方形的边时的点为P1的坐标是(5,3),
小球第二次碰到正方形的边时的点为P2的坐标是(3,5),
小球第三次碰到正方形的边时的点为P3的坐标是(0,2),
小球第四次碰到正方形的边时的点为P4的坐标是(2,0),
∴每四次一个循环,则2015÷4=503…3,
∴P2015的坐标是(0,2);
故选:C.
【点评】此题考查了点的坐标,关键是根据所给出的图形,找出小球碰到正方形边的规律,得出每四次一个循环.
23.如图,动点P从(0,3)出发,沿箭头所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角.当点P第2018次碰到矩形的边时,点P的坐标为( )
A.(1,4)B.(5,0)C.(7,4)D.(8,3)
【答案】C
【解答】解:如图,经过6次反弹后动点回到出发点(0,3),
∵2018÷6=336…2,
∴当点P第2018次碰到矩形的边时为第336个循环组的第2次反弹,
点P的坐标为(7,4).
故选:C.
【点评】此题主要考查了点的坐标的规律,作出图形,观察出每6次反弹为一个循环组依次循环是解题的关键.
三.坐标确定位置(共13小题)
24.象棋起源于中国,中国象棋文化历史悠久.如图,是中国象棋棋盘的一部分,若“帅”位于点(1,﹣1),“炮”位于点(2,1)上,则“兵”位于点( )上
A.(0,2)B.(﹣2,3)C.(﹣3,0)D.(﹣1,2)
【答案】D
【解答】解:∵“兵”在“炮”的上面,
∴“兵“的纵坐标是1+1=2,
∵“兵”在“帅”的左面第二格上,
∴“兵”的横坐标是1﹣2=﹣1,
∴“兵”的坐标是(﹣1,2),
故选:D.
【点评】本题考查了根据点的位置求点的坐标,关键是找到点所对应的横坐标和纵坐标,再写出点的坐标.
25.将正整数按如图所示的规律排列下去,若有序实数对(n,m)表示第n排,从左到右第m个数,如(4,2)表示9,则表示58的有序数对是( )
A.(11,3)B.(3,11)C.(11,9)D.(9,11)
【答案】A
【解答】解:根据图中所揭示的规律可知,1+2+3+4+5+6+7+8+9+10=55,所以58在第11排;偶数排从左到右由大到小,奇数排从左到右由小到大,所以58应该在11排的从左到右第3个数.
故选:A.
【点评】主要考查了学生读图找规律的能力,能从数列中找到数据排列的规律是解题的关键.
26.如图,已知棋子“车”的坐标为(﹣2,﹣1),棋子“马”的坐标为(1,﹣1),则棋子“炮”的坐标为( )
A.(3,2)B.(﹣3,2)C.(3,﹣2)D.(﹣3,﹣2)
【答案】C
【解答】解:如图,
棋子“炮”的坐标为(3,﹣2).
故选:C.
【点评】本题考查了坐标确定位置:平面坐标系中的点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.
27.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )
A.(5,4)B.(4,5)C.(3,4)D.(4,3)
【答案】D
【解答】解:如果小华的位置用(0,0)表示,小军的位置用(2,1)表示,如图所示就是以小华为原点的平面直角坐标系的第一象限,所以小刚的位置为(4,3).
故选:D.
【点评】本题利用平面直角坐标系表示点的位置,是学数学在生活中用的例子.
28.如图中的一张脸,小明说:“如果我用(0,2)表示左眼,用(2,2)表示右眼”,那么嘴的位置可以表示成( )
A.(0,1)B.(2,1)C.(1,0)D.(1,﹣1)
【答案】C
【解答】解:如图,
嘴的位置可以表示成(1,0).
故选:C.
【点评】本题考查了坐标确定位置:平面内的点与有序实数对一一对应;记住直角坐标系中特殊位置点的坐标特征.
29.象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图,是一局象棋残局,已知表示棋子“馬”和“車”的点的坐标分别为(4,3),(﹣2,1),则表示棋子“炮”的点的坐标为( )
A.(﹣3,3)B.(3,2)C.(0,3)D.(1,3)
【答案】D
【解答】解:如图所示:棋子“炮”的点的坐标为:(1,3).
故选:D.
【点评】此题主要考查了坐标确定位置,正确得出原点的位置是解题关键.
30.如图,小球起始时位于(3,0)处,沿所示的方向击球,小球运动的轨迹如图所示.如果小球起始时位于(1,0)处,仍按原来方向击球,小球第一次碰到球桌边时,小球的位置是(0,1),那么小球第2020次碰到球桌边时,小球的位置是( )
A.(3,4)B.(5,4)C.(7,0)D.(8,1)
【答案】D
【解答】解:由图可得,
点(1,0)第一次碰撞后的点的坐标为(0,1),
第二次碰撞后的点的坐标为(3,4),
第三次碰撞后的点的坐标为(7,0),
第四次碰撞后的点的坐标为(8,1),
第五次碰撞后的点的坐标为(5,4),
第六次碰撞后的点的坐标为(1,0),
…,
∵2020÷6=336…4,
∴小球第2020次碰到球桌边时,小球的位置是(8,1),
故选:D.
【点评】本题考查坐标确定位置,解答本题的关键是明确题意,发现点的坐标位置的变化特点,利用数形结合的思想解答.
31.如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动一个单位,依次得到点P1(0,1);P2(1,1);P3(1,0);P4(1,﹣1);P5(2,﹣1);P6(2,0)……,则点P2019的坐标是 (673,0) .
【答案】见试题解答内容
【解答】解:由P3、P6、P9 可得规律:当下标为3的整数倍时,横坐标为,纵坐标为0,
∵2019÷3=673,
∴P2019 (673,0)
则点P2019的坐标是 (673,0).
故答案为 (673,0).
【点评】本题属于平面直角坐标系中找点的规律问题,找到某种循环规律之后,可以得解.本题难度中等偏上.
32.将正整数按如图所示的规律排列下去,若有序实数对(n,m)表示第n排,从左到右第m个数,如(4,2)表示实数9,则表示实数17的有序实数对是 (6,5) .
【答案】见试题解答内容
【解答】解:观察图表可知:每排的数字个数就是排数;且奇数排从左到右,从小到大,而偶数排从左到右,从大到小.
实数15=1+2+3+4+5,
则17在第6排,第5个位置,即其坐标为(6,5).
故答案为:(6,5).
【点评】考查类比点的坐标解决实际问题的能力和阅读理解能力.分析图形,寻找规律是关键.
33.如图所示,在象棋盘上建立平面直角坐标系,使“马”位于点(2,2),“炮”位于点(﹣1,2),写出“兵”所在位置的坐标 (﹣2,3) .
【答案】见试题解答内容
【解答】解:建立平面直角坐标系如图,
兵的坐标为(﹣2,3).
故答案为:(﹣2,3).
【点评】本题考查了坐标确定位置,确定出原点的位置并建立平面直角坐标系是解题的关键.
34.以水平数轴的原点O为圆心,过正半轴Ox上的每一刻度点画同心圆,将Ox逆时针依次旋转30°、60°、90°、…、330°得到11条射线,构成如图所示的“圆”坐标系,点A、B的坐标分别表示为(5,0°)、(4,300°),则点C的坐标表示为 (3,240°) .
【答案】见试题解答内容
【解答】解:如图所示:点C的坐标表示为(3,240°).
故答案为:(3,240°).
【点评】此题主要考查了坐标确定位置,正确理解坐标的意义是解题关键.
35.将正整数按如图所示的规律排列下去.若用有序实数对(n,m)表示第n排,从左到右第m个数,如(4,3)表示实数9,则(7,2)表示的实数是 23 .
【答案】见试题解答内容
【解答】解:从图中可以发观,第n排的最后的数为:n(n+1)
∵第6排最后的数为:×6(6+1)=21,
∴(7,2)表示第7排第2个数,则第7排第二个数为21+2=23.
故答案填:23.
【点评】本题主要考查了学生阅读理解及总结规律的能力,找到第n排的最后的数的表达式是解题的关键.
36.多多和爸爸、妈妈周末到动物园游玩,回到家后,她利用平面直角坐标系画出了动物园的景区地图,如图所示.可是她忘记了在图中标出原点和x轴、y轴.只知道马场的坐标为(﹣3,﹣3),你能帮她建立平面直角坐标系并求出其他各景点的坐标?
【答案】见试题解答内容
【解答】解:建立坐标系如图:
∴南门(0,0),狮子(﹣4,5),飞禽(3,4)两栖动物(4,1).
【点评】本题考查了坐标位置的确定,由已知条件正确确定坐标轴的位置是解决本题的关键.
四.坐标与图形性质(共11小题)
37.已知两点A(a,5),B(﹣1,b)且直线AB∥x轴,则( )
A.a可取任意实数,b=5B.a=﹣1,b可取任意实数
C.a≠﹣1,b=5D.a=﹣1,b≠5
【答案】C
【解答】解:∵AB∥x轴,
∴b=5,a≠﹣1,
故选:C.
【点评】本题主要考查坐标与图形的性质,熟练掌握平面内点的坐标的特点是解题的关键.
38.已知点A(m+1,﹣2)和点B(3,m﹣1),若直线AB∥x轴,则m的值为( )
A.2B.﹣4C.﹣1D.3
【答案】C
【解答】解:∵点A(m+1,﹣2),B(3,m﹣1),直线AB∥x轴,
∴m﹣1=﹣2,
解得m=﹣1.
故选:C.
【点评】本题考查了坐标与图形性质,熟记平行于x轴的直线上的点的纵坐标相同是解题的关键.
39.平面直角坐标系内AB∥y轴,AB=5,点A的坐标为(﹣5,3),则点B的坐标为( )
A.(﹣5,8)B.(0,3)
C.(﹣5,8)或(﹣5,﹣2)D.(0,3)或(﹣10,3)
【答案】C
【解答】解:∵AB∥y轴,
∴A、B两点横坐标都为﹣5,
又∵AB=5,
∴当B点在A点上边时,B(﹣5,8),
当B点在A点下边时,B(﹣5,﹣2);
故选:C.
【点评】本题考查了坐标与图形的性质,平行于y轴的直线上的点横坐标相等,要求能根据两点相对的位置及两点距离确定点的坐标.
40.已知点P(2m+4,m﹣1),点Q(2,5),直线PQ∥y轴,点P的坐标是( )
A.(2,2)B.(16,5)C.(2,﹣2)D.(﹣2,5)
【答案】C
【解答】解:∵点P(2m+4,m﹣1),点Q(2,5),直线PQ∥y轴,
∴2m+4=2,且m﹣1≠5,
∴m=﹣1,
∴P(2,﹣2),
故选:C.
【点评】此题主要考查了坐标与图形性质,点的坐标,正确的理解题意是解题关键.
41.平面直角坐标系中,已知点A(﹣3,2),B(x,y),且AB∥x轴,若点B到y轴的距离是到x轴距离的2倍,则点B的坐标为( )
A.(4,2)或(﹣4,2)B.(﹣4,2)或(﹣4,﹣2)
C.(4,2)或(4,﹣2)D.(﹣4,﹣2)或(4,﹣2)
【答案】A
【解答】解:∵AB∥x轴,
∴y=2.
∵点B到x轴的距离是到y轴的距离的2倍,
∴x=2y或x=﹣2y.
∴x=4或x=﹣4.
∴点B的坐标为(4,2)或(﹣4,2).
故选:A.
【点评】本题主要考查坐标与图形的性质,重点在于理解点到坐标轴的距离与点坐标之间的关系,关系清晰,则本题很容易求解.
42.已知点A(m,﹣2),B(3,m﹣1),且直线AB∥x轴,则m的值是 ﹣1 .
【答案】见试题解答内容
【解答】解:∵点A(m,﹣2),B(3,m﹣1),直线AB∥x轴,
∴m﹣1=﹣2,
解得m=﹣1.
故答案为:﹣1.
【点评】本题考查了坐标与图形性质,熟记平行于x轴的直线上的点的纵坐标相同是解题的关键.
43.教材上曾让同学们探索过线段的中点坐标:在平面直角坐标系中,若两点A(x1,y1)、B(x2,y2),所连线段AB的中点是M,则M的坐标为(,),例如:点A(1,2)、点B(3,6),则线段AB的中点M的坐标为(,),即M(2,4)请利用以上结论解决问题:在平面直角坐标系中,若点E(a﹣1,a),F(b,a﹣b),线段EF的中点G恰好位于x轴上,且到y轴的距离是2,则2a+b的值等于 或﹣4 .
【答案】或﹣4.
【解答】解:∵点E(a﹣1,a),F(b,a﹣b),
∴中点G(,),
∵中点G恰好位于x轴上,且到y轴的距离是2,
∴,
解得:,,
∴2a+b=或﹣4;
故答案为:或﹣4.
【点评】此题考查坐标与图形性质,中点坐标公式,关键是根据线段的中点坐标公式解答.
44.在平面直角坐标系中,若点M(1,3)与点N(m,3)之间的距离是3,则m的值是 4或﹣2 .
【答案】见试题解答内容
【解答】解:∵点M(1,3)与点N(m,3)
∴MN∥x轴
∵MN=3
∴1+3=4,1﹣3=﹣2
∴N(4,3)或(﹣2,3)
∴m的值为4或﹣2
故答案为:4或﹣2
【点评】题目考查了平面直角坐标系中利用两点之间的距离求点的坐标,题目相对较为简单,但是本题有两种情况,不要遗漏m的解.
45.如图,在平面直角坐标系中,已知A(0,a),B(b,0),C(b,c)三点,其中a、b、c满足关系式|a﹣2|+(b﹣3)2=0,(c﹣4)2≤0
(1)求a、b、c的值;
(2)如果在第二象限内有一点P(m,),请用含m的式子表示四边形ABOP的面积;
(3)在(2)的条件下,是否存在点P,使四边形ABOP的面积与△ABC的面积相等?若存在,求出点P的坐标,若不存在,请说明理由.
【答案】见试题解答内容
【解答】解:(1)由已知|a﹣2|+(b﹣3)2=0,(c﹣4)2≤0及(c﹣4)2≥0
可得:a=2,b=3,c=4;
(2)∵×2×3=3,×2×(﹣m)=﹣m,
∴S四边形ABOP=S△ABO+S△APO=3+(﹣m)=3﹣m
(3)因为×4×3=6,
∵S四边形ABOP=S△ABC
∴3﹣m=6,
则 m=﹣3,
所以存在点P(﹣3,)使S四边形ABOP=S△ABC.
【点评】本题考查了非负数的性质,三角形及四边形面积的求法,根据题意容易解答.
46.已知:如图,△ABC的三个顶点位置分别是A(1,0)、B(﹣2,3)、C(﹣3,0).
(1)求△ABC的面积是多少?
(2)若点A、C的位置不变,当点P在y轴上时,且S△ACP=2S△ABC,求点P的坐标?
(3)若点B、C的位置不变,当点Q在x轴上时,且S△BCQ=2S△ABC,求点Q的坐标?
【答案】见试题解答内容
【解答】解:(1)∵A(1,0),B(﹣2,3),C(﹣3,0),
∴AC=1﹣(﹣3)=1+3=4,
点B到AC的距离为3,
∴△ABC的面积=×4×3=6;
(2)∵S△ACP=2S△ABC=12,
∴以AC为底时,△ACP的高=12×2÷4=6,
∴点P在y轴正半轴时,P(0,6);
点P在y轴负半轴时,P(0,﹣6);
(3)∵S△BCQ=2S△ABC=12,
∴以CQ为底时,△BCQ的高为3,底边CQ=12×2÷3=8,
∴点Q在C的左边时,Q(﹣3﹣8,0),即Q(﹣11,0);
点Q在C的右边时,Q(﹣3+8,0),即Q(5,0).
【点评】本题考查了坐标与图形性质,三角形的面积,难点在于要分情况讨论.
47.如图:在直角坐标系中,第一次将△AOB变换成△OA1B1,第二次将三角形变换成△OA2B2,第三次将△OA2B2,变换成△OA3B3,已知A(1,3),A1(3,3),A2(5,3),A3(7,3);B(2,0),B1(4,0),B2(8,0),B3(16,0).
(1)观察每次变换前后的三角形有何变化,找出规律,按此变化规律再将△OA3B3变换成△OA4B4,则A4的坐标是 (9,3) ,B4的坐标是 (32,0) .
(2)若按(1)找到的规律将△OAB进行了n次变换,得到△OAnBn,比较每次变换中三角形顶点有何变化,找出规律,推测An的坐标是 (2n+1,3) ,Bn的坐标是 (2n+1,0) .
【答案】见试题解答内容
【解答】解:(1)已知A(1,3),A1(3,3),A2(5,3),A3(7,3);
对于A1,A2,An坐标找规律比较从而发现An的横坐标为2n+1,而纵坐标都是3;
同理B1,B2,Bn也一样找规律,规律为Bn的横坐标为2n+1,纵坐标为0.
由上规律可知:(1)A4的坐标是(9,3),B4的坐标是(32,0);
(2)An的坐标是(2n+1,3),Bn的坐标是(2n+1,0)
【点评】本题是观察坐标规律的问题,需要分别从横坐标,纵坐标两方面观察规律,写出答案.
五.两点间的距离公式(共3小题)
48.在平面直角坐标系中,若点M(﹣2,3)与点N(﹣2,y)之间的距离是5,那么y的值是( )
A.﹣2B.8C.2或8D.﹣2或8
【答案】D
【解答】解:∵点M(﹣2,3)与点N(﹣2,y)之间的距离是5,
∴|y﹣3|=5,
解得:y=8或y=﹣2.
故选:D.
【点评】本题考查了两点间的距离公式以及解含绝对值符号的一元一次方程,利用两点间的距离公式,找出关于y的含绝对值符号的一元一次方程是解题的关键.
49.已知点M(3,﹣4),在x轴上有一点与M的距离为5,则该点的坐标为( )
A.(6,0)B.(0,1)
C.(0,﹣8)D.(6,0)或(0,0)
【答案】D
【解答】解:该点与M点的距离是5,则这点就是以M点为圆心,以5为半径的圆与x轴的交点,如图:过M作x轴的垂线,垂足是N,则ON=3,MN=4.根据勾股定理就可以求得OM=5,则O就是圆与x轴的一个交点,则O坐标是(0,0);设另一个交点是A,MN⊥OA,则本题满足垂径定理,AN=ON=3.
∴点A的坐标是(6,0).
故选:D.
【点评】本题运用了垂径定理,把求点的坐标的问题转化为求线段的长的问题,利用数形结合可以更直观地解题.
50.先阅读下列一段文字,再解答问题
已知在平面内有两点P1(x1,y1),P2(x2,y2),其两点间的距离公式为P1P2=,同时,当两点所在的直线在坐标轴上或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x2﹣x1|或|y2﹣y1|
(1)已知点A(2,4),B(﹣3,﹣8),试求A,B两点间的距离;
(2)已知点A,B在平行于y轴的直线上,点A的纵坐标为5,点B的纵坐标为﹣1,试求A,B两点间的距离;
(3)已知点A(0,6)B(﹣3,2),C(3,2),判断线段AB,BC,AC中哪两条是相等的?并说明理由.
【答案】见试题解答内容
【解答】解:(1)依据两点间的距离公式,可得AB==13;
(2)当点A,B在平行于y轴的直线上时,AB=|﹣1﹣5|=6;
(3)AB与AC相等.理由:
∵AB==5;
AC==5;
BC=|3﹣(﹣3)|=6.
∴AB=AC.
【点评】本题主要考查了两点间的距离公式,平面内有两点P1(x1,y1),P2(x2,y2),其两点间的距离公式为P1P2=.求直角坐标系内任意两点间的距离可直接套用此公式.
六.坐标与图形变化-平移(共6小题)
51.如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为( )
A.2B.3C.4D.5
【答案】A
【解答】解:由B点平移前后的纵坐标分别为1、2,可得B点向上平移了1个单位,
由A点平移前后的横坐标分别是为2、3,可得A点向右平移了1个单位,
由此得线段AB的平移的过程是:向上平移1个单位,再向右平移1个单位,
所以点A、B均按此规律平移,
由此可得a=0+1=1,b=0+1=1,
故a+b=2.
故选:A.
【点评】本题考查了坐标系中点、线段的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.
52.如图,线段AB经过平移得到线段A′B′,其中点A,B的对应点分别为点A′,B′,这四个点都在格点上.若线段AB上有一个点P(a,b),则点P在A′B′上的对应点P′的坐标为( )
A.(a﹣2,b+3)B.(a﹣2,b﹣3)C.(a+2,b+3)D.(a+2,b﹣3)
【答案】A
【解答】解:由题意可得线段AB向左平移2个单位,向上平移了3个单位,
则P(a﹣2,b+3)
故选:A.
【点评】此题主要考查了坐标与图形的变化﹣﹣平移,关键是掌握横坐标,右移加,左移减;纵坐标,上移加,下移减.
53.如图,A,B的坐标为(2,0),(0,1)若将线段AB平移至A1B1,则a+b的值为 2 .
【答案】见试题解答内容
【解答】解:由题意可知:a=0+(3﹣2)=1;b=0+(2﹣1)=1;
∴a+b=2.
【点评】解决本题的关键是得到各点的平移规律.
54.如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2).
(1)写出点A、B的坐标:
A( 2 , ﹣1 )、B( 4 , 3 )
(2)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,则A′B′C′的三个顶点坐标分别是A′( 0 , 0 )、B′( 2 , 4 )、C′( ﹣1 , 3 ).
(3)△ABC的面积为 5 .
【答案】见试题解答内容
【解答】解:(1)写出点A、B的坐标:A(2,﹣1)、B(4,3)
(2)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,则A′B′C′的三个顶点坐标分别是A′(0,0)、B′(2,4)、C′(﹣1,3).
(3)△ABC的面积=3×4﹣2××1×3﹣×2×4=5.
【点评】用到的知识点为:左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加;格点中的三角形的面积通常用长方形的面积减去若干直角三角形的面积表示.
55.如图,在平面直角坐标系中,点A,B的坐标分别为(﹣1,0),(3,0),现同时将点A,B分别向上平移2个单位长度,再向右平移1个单位长度,得到A,B的对应点C,D,连接AC,BD,CD.
(1)直接写出点C,D的坐标,求出四边形ABDC的面积;
(2)在x轴上是否存在一点F,使得三角形DFC的面积是三角形DFB面积的2倍,若存在,请求出点F的坐标;若不存在,请说明理由.
【答案】见试题解答内容
【解答】解:(1)C(0,2),D(4,2)
S四边形ABDC=AB•OC=4×2=8;
(2)存在,当BF=CD时,三角形DFC的面积是三角形DFB面积的2倍.
∵C(0,2),D(4,2),
∴CD=4,BF=CD=2.
∵B(3,0),
∴F(1,0)或(5,0).
【点评】本题考查平移有关知识.平移的基本性质是:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.
56.如图所示,A(1,0)、点B在y轴上,将三角形OAB沿x轴负方向平移,平移后的图形为三角形DEC,且点C的坐标为(a,b),且a=+﹣3.
(1)直接写出点C的坐标 (﹣3,2) ;
(2)直接写出点E的坐标 (﹣2,0) ;
(3)点P是CE上一动点,设∠CBP=x°,∠PAD=y°,∠BPA=z°,确定x,y,z之间的数量关系,并证明你的结论.
【答案】见试题解答内容
【解答】解:(1)∵a=+﹣3,
∴b=2,a=﹣3,
∵点C的坐标为(a,b),
∴点C的坐标为:(﹣3,2);
故答案为:(﹣3,2);
(2)∵点B在y轴上,点C的坐标为:(﹣3,2),
∴B点向左平移了3个单位长度,
∴A(1,0),向左平移3个单位得到:(﹣2,0)
∴点E的坐标为:(﹣2,0);
故答案为:(﹣2,0);
(3)x+y=z.证明如下:
如图,过点P作PN∥CB,
∴∠CBP=∠BPN
又∵BC∥AE,
∴PN∥AE
∴∠EAP=∠APN
∴∠CBP+∠EAP=∠BPN+∠APN=∠APB,
即x+y=z.
【点评】此题主要考查了平移的性质以及平行线的性质,正确应用平行线的性质是解题关键.
相关试卷
这是一份人教版数学七年级暑假作业 第06练 平面直角坐标系 (原卷版+解析版),文件包含人教版数学七年级暑假作业第06练平面直角坐标系解析版docx、人教版数学七年级暑假作业第06练平面直角坐标系原卷版docx等2份试卷配套教学资源,其中试卷共12页, 欢迎下载使用。
这是一份专题03 平面直角坐标系中的图形面积——2022-2023学年人教版数学七年级下册单元综合复习(原卷版+解析版),文件包含专题03平面直角坐标系中的图形面积解析版docx、专题03平面直角坐标系中的图形面积原卷版docx等2份试卷配套教学资源,其中试卷共47页, 欢迎下载使用。
这是一份专题03 平面直角坐标系中的图形面积——2022-2023学年人教版数学七年级下册单元综合复习(原卷版+解析版),文件包含专题03平面直角坐标系中的图形面积解析版docx、专题03平面直角坐标系中的图形面积原卷版docx等2份试卷配套教学资源,其中试卷共47页, 欢迎下载使用。