2022年山西长治中考数学试卷及答案
展开1.﹣6的相反数为( )
A.6B.C.D.﹣6
2.2022年4月16日,神舟十三号载人飞船圆满完成全部既定任务,顺利返回地球家园.六个月的飞天之旅展现了中国航天科技的新高度下列航天图标,其文字上方的图案是中心对称图形的是( )
A.B.C.D.
3.粮食是人类赖以生存的重要物质基础.2021年我国粮食总产量再创新高,达68285万吨.该数据可用科学记数法表示为( )
A.6.8285×104吨B.68285×104吨
C.6.8285×107吨D.6.8285×108吨
4.神奇的自然界处处蕴含着数学知识.动物学家在鹦鹉螺外壳上发现,其每圈螺纹的直径与相邻螺纹直径的比约为0.618.这体现了数学中的( )
A.平移B.旋转C.轴对称D.黄金分割
5.不等式组的解集是( )
A.x≥1B.x<2C.1≤x<2D.x<
6.如图,Rt△ABC是一块直角三角板,其中∠C=90°,∠BAC=30°. 直尺的一边DE经过顶点A,若DE∥CB,则∠DAB的度数为( )
A.100°B.120°C.135°D.150°
7.化简﹣的结果是( )
A.B.a﹣3C.a+3D.
8.如图,△ABC内接于⊙O,AD是⊙O的直径,若∠B=20°,则∠CAD的度数是( )
A.60°B.65°C.70°D.75°
9.“二十四节气”是中华上古农耕文明的智慧结晶,被国际气象界普为“中国第五大发明”,小文购买了“二十四节气”主题邮票,他要将“立春”“立夏”“秋分”“大赛”四张邮票中的两张送给好朋友小乐.小文将它们背面朝上放在桌面上(邮票背面完全相同),让小乐从中随机抽取一张(不放回),再从中随机抽取一张,则小乐抽到的两张邮票恰好是“立春”和“立夏”的概率是( )
A.B.C.D.
10.如图,扇形纸片AOB的半径为3,沿AB折叠扇形纸片,点O恰好落在上的点C处,图中阴影部分的面积为()
A.3π﹣3B.3π﹣C.2π﹣3D.6π﹣
二、填空题(本大题共5个小题,每小题3分,共15分)
11.计算:×的结果为 .
12.根据物理学知识,在压力不变的情况下,某物体承受的压强p(Pa)是它的受力面积S
(m2)的反比例函数,其函数图象如图所示,当S=0.25m2时,该物体承受的压强p的值
为 Pa.
13. 生物学研究表明,植物光合作用速率越高,单位时间内合成的有机物越多,为了解甲、乙两个品种大豆的光合作用速率,科研人员从甲、乙两个品种的大豆中各选五株,在同等实验条件下,测量它们的光合作用速率(单位:μml•m﹣2•s﹣1),结果统计如下:
则两个大豆品种中光合作用速率更稳定的是 (填“甲”或“乙”).
14.某品牌护眼灯的进价为240元,商店以320元的价格出售.“五一节”期间,商店为让利于顾客,计划以利润率不低于20%的价格降价出售,则该护眼灯最多可降价 元.
15.如图,在正方形ABCD中,点E是边BC上的一点,点F在边CD的延长线上,且BE=DF,连接EF交边AD于点G.过点A作AN⊥EF,垂足为点M,交边CD于点N.若BE=5,CN=8,则线段AN的长为
三、解答题(本大题共8个小题,共75分.解答应写出文字说明,证明过程或演算步骤)
16.(1)计算:(﹣3)2×3﹣1+(﹣5+2)+|﹣2|;
(2)解方程组:.
17.如图,在矩形ABCD中,AC是对角线.
(1)实践与操作:利用尺规作线段AC的垂直平分线,垂足为点O,交边AD于点E,交边BC于点F(要求:尺规作图并保留作图痕迹,不写作法,标明字母),
(2)猜想与证明:试猜想线段AE与CF的数量关系,并加以证明.
18.2022年我国已成为全球最大的电动汽车市场,电动汽车在保障能源安全,改善空气质量等方面较传统汽车都有明显优势,经过对某款电动汽车和某款燃油车的对比调查发现,电动汽车平均每公里的充电费比燃油车平均每公里的加油费少0.6元.若充电费和加油费均为200元时,电动汽车可行驶的总路程是燃油车的4倍,求这款电动汽车平均每公里的充电费.
19.首届全民阅读大会于2022年4月23日在北京开幕,大会主题是“阅读新时代·奋进新征程”.某校“综合与实践”小组为了解全校3600名学生的读书情况,随机抽取部分学生进行问卷调查,形成了如下调查报告(不完整):
××中学学生读书情况调查报告
请根据以上调查报告,解答下列问题:
(1)求参与本次抽样调查的学生人数及这些学生中选择“从图书馆借阅”的人数;
(2)估计该校3600名学生中,平均每周阅读课外书时间在“8小时及以上”的人数;
(3)该小组要根据以上调查报告在全班进行交流,假如你是小组成员,请结合以上两项调查数据分别写出一条你获取的信息.
20.阅读与思考
下面是小宇同学的数学小论文,请仔细阅读并完成相应的任务
任务:(1)上面小论文中的分析过程,主要运用的数学思想是 (从下面选项中选出两个即可);
A.数形结合
B.统计思想
C.分类讨论
D.转化思想
(2)请参照小论文中当a>0时①②的分析过程,写出③中当a>0,Δ<0时,一元二次方程根的情况的分析过程,并画出相应的示意图;
(3)实际上,除一元二次方程外,初中数学还有一些知识也可以用函数观点来认识,例如:可用函数观点来认识一元一次方程的解.请你再举出一例为
21.随着科技的发展,无人机已广泛应用于生产和生活,如代替人们在高空测量距离和角度.某校“综合与实践”活动小组的同学要测星AB,CD两座楼之间的距离,他们借助无人机设计了如下测量方案:无人机在AB,CD两楼之间上方的点O处,点O距地面AC的高度为60m,此时观测到楼AB底部点A处的俯角为70°,楼CD上点E处的俯角为30°,沿水平方向由点O飞行24到达点F,测得点E处俯角为60°,其中点A,B,C,D,E,F,O均在同一竖直平面内.请根据以上数据求楼AB与CD之间的距离AC的长(结果精确到1m.参考数据:sin70°≈0.94,cs70°≈0.34,tan70°≈2.75,≈1.73).
22.综合与实践
问题情境:在Rt△ABC中,∠BAC=90°,AB=6,AC=8.直角三角板EDF中∠EDF=90°,将三角板的直角顶点D放在Rt△ABC斜边BC的中点处,并将三角板绕点D旋转,三角板的两边DE,DF分别与边AB,AC交于点M,N,猜想证明:
(1)如图①,在三角板旋转过程中,当点M为边AB的中点时,试判断四边形AMDN的形状,并说明理由;问题解决:
(2)如图②,在三角板旋转过程中,当∠B=∠MDB时,求线段CN的长;
(3)如图③,在三角板旋转过程中,当AM=AN时,直接写出线段AN的长.
23.综合与探究
如图,二次函数y=﹣x2+x+4的图象与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,点P是第一象限内二次函数图象上的一个动点,设点P的横坐标为m.过点P作直线PD⊥x轴于点D,作直线BC交PD于点E
(1)求A,B,C三点的坐标,并直接写出直线BC的函数表达式;
(2)当△CEP是以PE为底边的等腰三角形时,求点P的坐标;
(3)连接AC,过点P作直线l ∥AC,交y轴于点F,连接DF.试探究:在点P运动的过程中,是否存在点P,使得CE=FD,若存在,请直接写出m的值;若不存在,请说明理由.
品种
第一株
第二株
第三株
第四株
第五株
平均数
甲
32
30
25
18
20
25
乙
28
25
26
24
22
25
调查主题
××中学学生读书情况
调查方式
抽样调查
调查对象
××中学学生
数据的收集、整理与描述
第一项
您平均每周阅读课外书的时间大约是(只能单选,每项含最小值,不含最大值)
A.8小时及以上;
B.6~8小时;
C.4~6小时;
D.0~4小时.
第二项
您阅读的课外书的主要来源是(可多选)
E.自行购买;
F.从图书馆借阅;
G.免费数字阅读;
H.向他人借阅.
调查结论
……
用函数观点认识一元二次方程根的情况
我们知道,一元二次方程ax2+bx+c=0(a≠0)的根就是相应的二次函数y=ax2+bx+c(a≠0)的图象(称为抛物线)与x轴交点的横坐标.抛物线与x轴的交点有三种情况:有两个交点、有一个交点、无交点. 与此相对应,一元二次方程的根也有三种情况:有两个不相等的实数根、有两个相等的实数根、无实数根.因此可用抛物线与x轴的交点个数确定一元二次方程根的情况
下面根据抛物线的顶点坐标(﹣,)和一元二次方程根的判别式Δ=b2﹣4ac,分别分a>0和a<0两种情况进行分析:
(1)a>0时,抛物线开口向上.
①当Δ=b2﹣4ac>0时,有4ac﹣b2<0.∵a>0,∴顶点纵坐标<0.
∴顶点在x轴的下方,抛物线与x轴有两个交点(如图1).
②当Δ=b2﹣4ac=0时,有4ac﹣b2=0.∵a>0,∴顶点纵坐标=0.
∴顶点在x轴上,抛物线与x轴有一个交点(如图2).
∴一元二次方程ax2+bx+c=0(a≠0)有两个相等的实数根.
③当Δ=b2﹣4ac<0时,
……
(2)a<0时,抛物线开口向下.
……
2019年山西长治中考数学真题及答案: 这是一份2019年山西长治中考数学真题及答案,共13页。试卷主要包含了-3的绝对值是,下列运算正确的是,下列二次根式是最简二次根式的是,不等式组的解集是,五台山景区空气清爽,景色宜人,一元二次方程配方后可化为等内容,欢迎下载使用。
2018年山西长治中考数学真题及答案: 这是一份2018年山西长治中考数学真题及答案,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2017年山西长治中考数学真题及答案: 这是一份2017年山西长治中考数学真题及答案,共13页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。